

2

POUL KLAUSEN

JAVA 5: FILES AND
JAVA IO
SOFTWARE DEVELOPMENT

3

Java 5: Files and Java IO: Software Development
1st edition
© 2017 Poul Klausen & bookboon.com
ISBN 978-87-403-1735-0
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 5: FILES AND JAVA IO

4

Contents

4

CONTENTS

 Foreword 6

1 Introduction 8

2 java.io 10

2.1 Files 10

 Exercise 1 16

2.2 Random access files 17

 Problem 1 33

2.3 Byte streams 37

 Exercise 2 47

 Exercise 3 49

 Exercise 4 49

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 5: FILES AND JAVA IO

5

Contents

2.4 Object serialization 50

2.5 Character streams 62

 Problem 2 65

2.6 Text scanner 74

 Exercise 5 76

3 java.nio 78

3.1 Buffers 79

3.2 Channels 97

3.3 Path and Files 112

4 Operations on simple data types 127

4.1 The integers 127

 Exercise 6 131

 Exercise 7 135

 Problem 3 136

 Problem 4 143

 Exercise 8 145

 Exercise 9 148

 Exercise 10 149

5 Final example 150

5.1 The model 153

5.2 The user interface 157

5.3 The dialog box 160

 Appendix A 161

 The binary number system 162

 The hexadecimal system 166

 The integers 170

 Complement arithmetic 178

 Binary operations 189

 Encoding of characters 196

 Representation of decimal numbers 205

JAVA 5: FILES AND JAVA IO

6

Foreword

FOREWORD

This book is the fifth in a series of books on software development. The programming
language is Java, and the language and its syntax and semantic fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. As the previous book, this book has, however, only to a lesser extent focus on
the process, but more on the language and details regarding Java. The subject of this book
are files and what Java provides to IO, and the goal is in details to show how to manipulate
files. Although the files today do not means exactly the same for practical programming, the
processing of files is yet knowledge which is required to have in order to be able to work as
a professional software developer. Finally, it is important to be aware that IO plays a crucial
role in computer networking, and much of what follows will be used and expanded in the
book Java 15 on network programming. Furthermore treat this book data representation,
which are mostly deferred to an appendix, which also gives a brief introduction to the
binary and hexadecimal numbers. The detailed data representation do not play a big role in
everyday life, but also here is a topic that is necessary to have knowledge of, for example,
in the context of computer networks. The book assumes that the reader has a knowledge
corresponding to what is addressed in Java 3 and Java 4, but if you wish, the book can be
postponed until you get the need.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

JAVA 5: FILES AND JAVA IO

7

Foreword

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

 - NetBeans as IDE for application development
 - MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
 - GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 5: FILES AND JAVA IO

8

IntroduCtIon

1 INTRODUCTION

Many applications need to store data persistently and later read them again. As an example
can you think of a word processor, where the user is editing a document. Here, the program
could save the document for later load it again, so you can edit it further. As another
example, one can think of software in a terminal at the supermarket that must be able
to read product prices from a product file as items are scanned, and then the items file is
updated with the items sold and how many. Such data is called persistent, because it is data
that are retained after the program is completed and the machine is turned off.

Applications can store data persistent in several ways, and examples are

 - data can be saved in ordinary “flat” files
 - objects can be serialized to a file
 - data can be saved in databases
 - data can be saved as XML documents
 - data can be saved as json documents

In this note I only will look at ordinary files, including serialization of objects. In fact, I
already used files several times in the previous books, but the following is a more detailed
review and a description of many of the classes associated with the IO.

Previously, the use of ordinary files to save data, were very common, and although it no
longer has the same interest, there are still many situations where there is a need to store
data in or read data from ordinary files. On the whole, there are many examples where it
is interesting to be able to manipulate the file system from an application, and Java has an
extensive API with classes for the treatment of files. Object serialization is also a matter of
storing data in files, but in such a way that you can save an arbitrary object of any depth
in a file – and load the object again. For many simple applications are object serialization
and deserialization interesting, and in addition, serialization is used to send objects through
a network.

A program with many transactions, and it is a program which very often must save data
and read data from an external media will in practice always use a database. A database is
maintained by a software package which include a daemon, that constantly is waiting for
the other applications to enter a request for specific data items or to update the database.
Use of databases from a Java program is the theme for the next book.

JAVA 5: FILES AND JAVA IO

9

IntroduCtIon

The classes to files are included in the package java.io, but since the package was developed,
Java has expanded with a new package called java.nio – primarily for new needs and to
support the facilities in modern operating systems. Both packages are used and will probably
be that for many years to come, so the book covers in following both these two APIs.

The book consists basically of three parts, wherein the first two deals with IO and that the
third part deals with the binary representation of data. If you do not have knowledge of
binary and hexadecimal numbers, it might be a good idea first to read the books appendix.

JAVA 5: FILES AND JAVA IO

10

java.Io

2 JAVA.IO

This chapter covers stream’s, which is a collection of classes that provides the basic input
and output operations in Java. A stream is a sequence of data that can be sent over a
communication channel between a source and a destination. Both the source and destination
may be several things as a program, file, one or another external device such as a printer, a
network socket or an array in the computer’s memory. Java provides a large number of classes
available, all of which are intended to encapsulate the many details related to sending data
over a stream, and it applies to both a stream of bytes, other primitive types and objects of
all kinds. This chapter shows the use of many of the classes from java.io, and the classes
are presented primarily through small test methods in the project FileProgram.

As mentioned above, the concept of a stream has many applications, but this book focus
is primarily on streams between a file and a program.

2.1 FILES

You can think of a file as an infinite array with elements of the type byte:

where a file has a so-called file pointer represented by the arrow. The file pointer indicates
where the next file operation starts, and the file pointer (the arrow) is moved forward
corresponding to the number of bytes read or written. Files are stored on the machine’s
disk, and the operating system organizes the files in the form of file system that keeps track
of directories and files. Each file has a unique name consisting of the name of the directory
that contains the file, and the file name which must be unique within the directory. Java has
a class called File, which represents a file by its name and provides a number of methods
available that can be used to manipulate the file.

FILE INFO

The following method prints information about a file:

JAVA 5: FILES AND JAVA IO

10

JAVA.IO

2 JAVA.IO

This chapter covers stream’s, which is a collection of classes that provides the basic input
and output operations in Java. A stream is a sequence of data that can be sent over a
communication channel between a source and a destination. Both the source and destination
may be several things as a program, file, one or another external device such as a printer, a
network socket or an array in the computer’s memory. Java provides a large number of classes
available, all of which are intended to encapsulate the many details related to sending data
over a stream, and it applies to both a stream of bytes, other primitive types and objects of
all kinds. This chapter shows the use of many of the classes from java.io, and the classes
are presented primarily through small test methods in the project FileProgram.

As mentioned above, the concept of a stream has many applications, but this book focus
is primarily on streams between a file and a program.

2.1 FILES

You can think of a file as an infinite array with elements of the type byte:

where a file has a so-called file pointer represented by the arrow. The file pointer indicates
where the next file operation starts, and the file pointer (the arrow) is moved forward
corresponding to the number of bytes read or written. Files are stored on the machine’s
disk, and the operating system organizes the files in the form of file system that keeps track
of directories and files. Each file has a unique name consisting of the name of the directory
that contains the file, and the file name which must be unique within the directory. Java has
a class called File, which represents a file by its name and provides a number of methods
available that can be used to manipulate the file.

FILE INFO

The following method prints information about a file:

private static void fileInfo(String filename) throws IOException
{
 File file = new File(filename);
 System.out.println("Absolute path = " + file.getAbsolutePath());

JAVA 5: FILES AND JAVA IO

11

java.Io
JAVA 5: FILES AND JAVA IO

11

JAVA.IO

 System.out.println("Canonical path = " + file.getCanonicalPath());
 System.out.println("Name = " + file.getName());
 System.out.println("Parent = " + file.getParent());
 System.out.println("Path = " + file.getPath());
 System.out.println("Is absolute = " + file.isAbsolute());
 System.out.println(file.exists() ?
 "The file object exists" : "The file object is not found");
 if (file.exists()) System.out.println(file.isDirectory() ?
 "The file object is a folder" : "The file object is a file");
 System.out.println(file.length());
 System.out.println();
}

The method has a parameter that is the name of a file. Note that the method can raise an
IOException, and it generally occurs, if you try to perform a method that works on a file,
and the method of one reason or another can not be performed. In this case it is only
one of the methods that can raise an IOException. The method creates a File object that
represents a file named filename. You should note that a File object can represent both a
directory and a file, and that it is not a requirement that the file (or the directory) exists,
or is a legal file name. These conditions have first importance when the object is used. The
first two statements prints the absolute file name and the canonical file name. In most cases
it is the same, but the canonical file name is the simplets possible full file name and may
be different than the absolute file name (see the test of the program).

The next three statements prints respectively the file name, the parent and the path. Here
is the file name alone the name of the filen within the directory where it belongs, while
the parent is the file name of the directory that the file is a part of. Path is the name used
to create the File object and hence in this case the value of the parameter filename. The
last three statements tests whether it is an absolute file name, and whether there exists a
diretory, or a file with that name. In this case is tested whether it is a directory or a file.
Finally the last statements prints the file size, measured in bytes.

The following test method uses the method fileInfo() to print information about various
File objects:

private static void test01()
{
 System.out.println("Working Directory = " + System.getProperty("user.dir"));
 try
 {
 fileInfo("/home/pa/doc");
 fileInfo("/home/pa/doc/Swing.odt");

The method has a parameter that is the name of a file. Note that the method can raise an
IOException, and it generally occurs, if you try to perform a method that works on a file,
and the method of one reason or another can not be performed. In this case it is only
one of the methods that can raise an IOException. The method creates a File object that
represents a file named filename. You should note that a File object can represent both a
directory and a file, and that it is not a requirement that the file (or the directory) exists,
or is a legal file name. These conditions have first importance when the object is used. The
first two statements prints the absolute file name and the canonical file name. In most cases
it is the same, but the canonical file name is the simplets possible full file name and may
be different than the absolute file name (see the test of the program).

The next three statements prints respectively the file name, the parent and the path. Here
is the file name alone the name of the filen within the directory where it belongs, while
the parent is the file name of the directory that the file is a part of. Path is the name used
to create the File object and hence in this case the value of the parameter filename. The
last three statements tests whether it is an absolute file name, and whether there exists a
diretory, or a file with that name. In this case is tested whether it is a directory or a file.
Finally the last statements prints the file size, measured in bytes.

The following test method uses the method fileInfo() to print information about various
File objects:

JAVA 5: FILES AND JAVA IO

11

JAVA.IO

 System.out.println("Canonical path = " + file.getCanonicalPath());
 System.out.println("Name = " + file.getName());
 System.out.println("Parent = " + file.getParent());
 System.out.println("Path = " + file.getPath());
 System.out.println("Is absolute = " + file.isAbsolute());
 System.out.println(file.exists() ?
 "The file object exists" : "The file object is not found");
 if (file.exists()) System.out.println(file.isDirectory() ?
 "The file object is a folder" : "The file object is a file");
 System.out.println(file.length());
 System.out.println();
}

The method has a parameter that is the name of a file. Note that the method can raise an
IOException, and it generally occurs, if you try to perform a method that works on a file,
and the method of one reason or another can not be performed. In this case it is only
one of the methods that can raise an IOException. The method creates a File object that
represents a file named filename. You should note that a File object can represent both a
directory and a file, and that it is not a requirement that the file (or the directory) exists,
or is a legal file name. These conditions have first importance when the object is used. The
first two statements prints the absolute file name and the canonical file name. In most cases
it is the same, but the canonical file name is the simplets possible full file name and may
be different than the absolute file name (see the test of the program).

The next three statements prints respectively the file name, the parent and the path. Here
is the file name alone the name of the filen within the directory where it belongs, while
the parent is the file name of the directory that the file is a part of. Path is the name used
to create the File object and hence in this case the value of the parameter filename. The
last three statements tests whether it is an absolute file name, and whether there exists a
diretory, or a file with that name. In this case is tested whether it is a directory or a file.
Finally the last statements prints the file size, measured in bytes.

The following test method uses the method fileInfo() to print information about various
File objects:

private static void test01()
{
 System.out.println("Working Directory = " + System.getProperty("user.dir"));
 try
 {
 fileInfo("/home/pa/doc");
 fileInfo("/home/pa/doc/Swing.odt");

JAVA 5: FILES AND JAVA IO

12

java.Io

12

JAVA 5: FILES AND JAVA IO

12

JAVA.IO

12

 fileInfo("/home/pa/doc/xpq/1234");
 fileInfo(".");
 fileInfo("..");
 fileInfo("doc");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

Note especially the first statement that prints the name on the current directory. You are
invited to test the example and study the result.

DRIVE INFO

The following method has a File object as a parameter, and the method prints information
about that disk partition, that contains the file:

private static void print(File root)
{
 System.out.println("Partition: " + root);

Note especially the first statement that prints the name on the current directory. You are
invited to test the example and study the result.

DRIVE INFO

The following method has a File object as a parameter, and the method prints information
about that disk partition, that contains the file:

JAVA 5: FILES AND JAVA IO

12

JAVA.IO

12

 fileInfo("/home/pa/doc/xpq/1234");
 fileInfo(".");
 fileInfo("..");
 fileInfo("doc");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

Note especially the first statement that prints the name on the current directory. You are
invited to test the example and study the result.

DRIVE INFO

The following method has a File object as a parameter, and the method prints information
about that disk partition, that contains the file:

private static void print(File root)
{
 System.out.println("Partition: " + root);

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 5: FILES AND JAVA IO

13

java.Io
JAVA 5: FILES AND JAVA IO

13

JAVA.IO

 System.out.println("Free space = " + root.getFreeSpace());
 System.out.println("Usable space = " + root.getUsableSpace());
 System.out.println("Total space = " + root.getTotalSpace());
 System.out.println();
}

All sizes are specified in bytes. When getFreeSpace() and getUsableSpace() usually do not
show the same value, it is because the latter is a better estimate, since it takes into account
the overhead associated with the current operating system’s file system. The method is used
in the following test method:

private static void test02()
{
 print(new File("/"));
 print(new File("/home"));
 print(new File("/run/media/pa/HD-PNFU3"));
}

which for my machine prints information about the root partition, the partition for home
and for an external hard drive.

THE SIZE OF A FILE AND FILTERS

The following method has as parameter a file name and creates a corresponding File object.
If this object represents a file, the method prints the name and the size where the size is
determined recursively by the method getSize(), which determines the size of the file tree
having the object file as a root. Note that size is a static variable, which is defined at the
start of the program.

private static void fileSize(String filename, FileFilter filter)
{
 File file = new File(filename);
 if (file.exists())
 {
 System.out.println(file.getAbsolutePath());
 size = 0;
 getSize(file, filter);
 System.out.println(size);
 }
 else System.out.println("Filen findes ikke");
}

All sizes are specified in bytes. When getFreeSpace() and getUsableSpace() usually do not
show the same value, it is because the latter is a better estimate, since it takes into account
the overhead associated with the current operating system’s file system. The method is used
in the following test method:

JAVA 5: FILES AND JAVA IO

13

JAVA.IO

 System.out.println("Free space = " + root.getFreeSpace());
 System.out.println("Usable space = " + root.getUsableSpace());
 System.out.println("Total space = " + root.getTotalSpace());
 System.out.println();
}

All sizes are specified in bytes. When getFreeSpace() and getUsableSpace() usually do not
show the same value, it is because the latter is a better estimate, since it takes into account
the overhead associated with the current operating system’s file system. The method is used
in the following test method:

private static void test02()
{
 print(new File("/"));
 print(new File("/home"));
 print(new File("/run/media/pa/HD-PNFU3"));
}

which for my machine prints information about the root partition, the partition for home
and for an external hard drive.

THE SIZE OF A FILE AND FILTERS

The following method has as parameter a file name and creates a corresponding File object.
If this object represents a file, the method prints the name and the size where the size is
determined recursively by the method getSize(), which determines the size of the file tree
having the object file as a root. Note that size is a static variable, which is defined at the
start of the program.

private static void fileSize(String filename, FileFilter filter)
{
 File file = new File(filename);
 if (file.exists())
 {
 System.out.println(file.getAbsolutePath());
 size = 0;
 getSize(file, filter);
 System.out.println(size);
 }
 else System.out.println("Filen findes ikke");
}

which for my machine prints information about the root partition, the partition for home
and for an external hard drive.

THE SIZE OF A FILE AND FILTERS

The following method has as parameter a file name and creates a corresponding File object.
If this object represents a file, the method prints the name and the size where the size is
determined recursively by the method getSize(), which determines the size of the file tree
having the object file as a root. Note that size is a static variable, which is defined at the
start of the program.

JAVA 5: FILES AND JAVA IO

13

JAVA.IO

 System.out.println("Free space = " + root.getFreeSpace());
 System.out.println("Usable space = " + root.getUsableSpace());
 System.out.println("Total space = " + root.getTotalSpace());
 System.out.println();
}

All sizes are specified in bytes. When getFreeSpace() and getUsableSpace() usually do not
show the same value, it is because the latter is a better estimate, since it takes into account
the overhead associated with the current operating system’s file system. The method is used
in the following test method:

private static void test02()
{
 print(new File("/"));
 print(new File("/home"));
 print(new File("/run/media/pa/HD-PNFU3"));
}

which for my machine prints information about the root partition, the partition for home
and for an external hard drive.

THE SIZE OF A FILE AND FILTERS

The following method has as parameter a file name and creates a corresponding File object.
If this object represents a file, the method prints the name and the size where the size is
determined recursively by the method getSize(), which determines the size of the file tree
having the object file as a root. Note that size is a static variable, which is defined at the
start of the program.

private static void fileSize(String filename, FileFilter filter)
{
 File file = new File(filename);
 if (file.exists())
 {
 System.out.println(file.getAbsolutePath());
 size = 0;
 getSize(file, filter);
 System.out.println(size);
 }
 else System.out.println("Filen findes ikke");
}

JAVA 5: FILES AND JAVA IO

14

java.Io

The method has a parameter whose type is Filter. It is an interface that defines a single
method

JAVA 5: FILES AND JAVA IO

14

JAVA.IO

The method has a parameter whose type is Filter. It is an interface that defines a single
method

public boolean accept(File pathname);

The method should test whether a file identified by the parameter meets certain criteria.
The FileFilter object is tranfered to the method getSize() together with the File object that
is represented by the file name:

private static void getSize(File file, FileFilter filter)
{
 if (file.isDirectory())
 {
 File[] files = filter == null ? file.listFiles() : file.listFiles(filter);
 for (File f : files) getSize(f, filter);
 }
 else if (filter == null || filter.accept(file)) size += file.length();
}

The method tests whether the first argument is a directory. Is this the case, the method
listFiles() is called, which returns an array of all files in this directory. The method exists in
several overloadings and include a method that as a parameter has a filter and returns only
the files that meet the filter. With the array (as possibly can be empty) available the method
getSize() is called recursively for all files in the array. If the method is called and the first
parameter is not a directory, there is nothing else than the static variable size is counted
with the file’s size – if it is a file to be included according a possibly filter.

Below is a test method that determines the size of all files partly under the current directory
and partly under the user’s home directory. In both cases, it happens with and without a
filter, where the filter accepts files that are either a directory or a regular file whose name
ends with .java:

private static void test03()
{
 FileFilter filter = new FileFilter() { public boolean accept(File f) {
 return f.isDirectory() || (f.isFile() && f.getName().endsWith(".java")); } };
 fileSize(".", null);
 fileSize(".", filter);
 fileSize(System.getProperty("user.home"), null);
 fileSize(System.getProperty("user.home"), filter);
}

You must note how the filter is defined on the basis of an anonymous class.

The method should test whether a file identified by the parameter meets certain criteria.
The FileFilter object is tranfered to the method getSize() together with the File object that
is represented by the file name:

JAVA 5: FILES AND JAVA IO

14

JAVA.IO

The method has a parameter whose type is Filter. It is an interface that defines a single
method

public boolean accept(File pathname);

The method should test whether a file identified by the parameter meets certain criteria.
The FileFilter object is tranfered to the method getSize() together with the File object that
is represented by the file name:

private static void getSize(File file, FileFilter filter)
{
 if (file.isDirectory())
 {
 File[] files = filter == null ? file.listFiles() : file.listFiles(filter);
 for (File f : files) getSize(f, filter);
 }
 else if (filter == null || filter.accept(file)) size += file.length();
}

The method tests whether the first argument is a directory. Is this the case, the method
listFiles() is called, which returns an array of all files in this directory. The method exists in
several overloadings and include a method that as a parameter has a filter and returns only
the files that meet the filter. With the array (as possibly can be empty) available the method
getSize() is called recursively for all files in the array. If the method is called and the first
parameter is not a directory, there is nothing else than the static variable size is counted
with the file’s size – if it is a file to be included according a possibly filter.

Below is a test method that determines the size of all files partly under the current directory
and partly under the user’s home directory. In both cases, it happens with and without a
filter, where the filter accepts files that are either a directory or a regular file whose name
ends with .java:

private static void test03()
{
 FileFilter filter = new FileFilter() { public boolean accept(File f) {
 return f.isDirectory() || (f.isFile() && f.getName().endsWith(".java")); } };
 fileSize(".", null);
 fileSize(".", filter);
 fileSize(System.getProperty("user.home"), null);
 fileSize(System.getProperty("user.home"), filter);
}

You must note how the filter is defined on the basis of an anonymous class.

The method tests whether the first argument is a directory. Is this the case, the method
listFiles() is called, which returns an array of all files in this directory. The method exists in
several overloadings and include a method that as a parameter has a filter and returns only
the files that meet the filter. With the array (as possibly can be empty) available the method
getSize() is called recursively for all files in the array. If the method is called and the first
parameter is not a directory, there is nothing else than the static variable size is counted
with the file’s size – if it is a file to be included according a possibly filter.

Below is a test method that determines the size of all files partly under the current directory
and partly under the user’s home directory. In both cases, it happens with and without a
filter, where the filter accepts files that are either a directory or a regular file whose name
ends with .java:

JAVA 5: FILES AND JAVA IO

14

JAVA.IO

The method has a parameter whose type is Filter. It is an interface that defines a single
method

public boolean accept(File pathname);

The method should test whether a file identified by the parameter meets certain criteria.
The FileFilter object is tranfered to the method getSize() together with the File object that
is represented by the file name:

private static void getSize(File file, FileFilter filter)
{
 if (file.isDirectory())
 {
 File[] files = filter == null ? file.listFiles() : file.listFiles(filter);
 for (File f : files) getSize(f, filter);
 }
 else if (filter == null || filter.accept(file)) size += file.length();
}

The method tests whether the first argument is a directory. Is this the case, the method
listFiles() is called, which returns an array of all files in this directory. The method exists in
several overloadings and include a method that as a parameter has a filter and returns only
the files that meet the filter. With the array (as possibly can be empty) available the method
getSize() is called recursively for all files in the array. If the method is called and the first
parameter is not a directory, there is nothing else than the static variable size is counted
with the file’s size – if it is a file to be included according a possibly filter.

Below is a test method that determines the size of all files partly under the current directory
and partly under the user’s home directory. In both cases, it happens with and without a
filter, where the filter accepts files that are either a directory or a regular file whose name
ends with .java:

private static void test03()
{
 FileFilter filter = new FileFilter() { public boolean accept(File f) {
 return f.isDirectory() || (f.isFile() && f.getName().endsWith(".java")); } };
 fileSize(".", null);
 fileSize(".", filter);
 fileSize(System.getProperty("user.home"), null);
 fileSize(System.getProperty("user.home"), filter);
}

You must note how the filter is defined on the basis of an anonymous class.You must note how the filter is defined on the basis of an anonymous class.

JAVA 5: FILES AND JAVA IO

15

java.Io

15

MANIPULATION OF THE FILE SYSTEM

The class file also has a variety of methods that can manipulate the file system, for example
create directories and files and delete them again. There are many (and you are encouraged
to examine which), and the following test method shows the use of a few of them, but
first a little helper method:

JAVA 5: FILES AND JAVA IO

15

JAVA.IO

15

MANIPULATION OF THE FILE SYSTEM

The class file also has a variety of methods that can manipulate the file system, for example
create directories and files and delete them again. There are many (and you are encouraged
to examine which), and the following test method shows the use of a few of them, but
first a little helper method:

private static void showFiles(File file)
{
 System.out.printf(file.isDirectory() ? "[%s]\n" : "%s\n", file.getName());
 if (file.isDirectory())
 {
 File[] files = file.listFiles();
 for (File f : files) showFiles(f);
 }
}

The method prints recursive a file tree with a particular File object as root. The test method
is presented below:

private static void test04()
{

The method prints recursive a file tree with a particular File object as root. The test method
is presented below:

JAVA 5: FILES AND JAVA IO

15

JAVA.IO

15

MANIPULATION OF THE FILE SYSTEM

The class file also has a variety of methods that can manipulate the file system, for example
create directories and files and delete them again. There are many (and you are encouraged
to examine which), and the following test method shows the use of a few of them, but
first a little helper method:

private static void showFiles(File file)
{
 System.out.printf(file.isDirectory() ? "[%s]\n" : "%s\n", file.getName());
 if (file.isDirectory())
 {
 File[] files = file.listFiles();
 for (File f : files) showFiles(f);
 }
}

The method prints recursive a file tree with a particular File object as root. The test method
is presented below:

private static void test04()
{

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 5: FILES AND JAVA IO

16

java.Io
JAVA 5: FILES AND JAVA IO

16

JAVA.IO

 File file = new File(System.getProperty("user.home") + "/test");
 try
 {
 file.mkdir();
 (new File(file, "filer")).mkdir();
 (new File(file, "filer/file1")).createNewFile();
 (new File(file, "filer/file2")).createNewFile();
 showFiles(file);
 file.deleteOnExit();
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

The first statement defines a File object that references a file named test in the user’s home
directory. Next, is created a directory with this name and including a sub-directory named
files. Below again are created two ordinary files, then the method showFiles() is called. The
result is the following:

[test]
[filer]
file2
file1

The last statement in the test method performs deleteOnExit(), which deletes all files and
directories as this File object has created. The method has probably not a great practical
use, but it is smart for testing to clean up as in this example.

EXERCISE 1

You must write a command, you can call Seek. The command shoul be performed in the
following manner

java -jar Seek.jar directory [text]

where directory is the name of a directory, while text is a search text. The command should
print the absolute file names of all files in the file tree whose root is directory and the file
name contains the search text text. The result could be the following:

The first statement defines a File object that references a file named test in the user’s home
directory. Next, is created a directory with this name and including a sub-directory named
files. Below again are created two ordinary files, then the method showFiles() is called. The
result is the following:

JAVA 5: FILES AND JAVA IO

16

JAVA.IO

 File file = new File(System.getProperty("user.home") + "/test");
 try
 {
 file.mkdir();
 (new File(file, "filer")).mkdir();
 (new File(file, "filer/file1")).createNewFile();
 (new File(file, "filer/file2")).createNewFile();
 showFiles(file);
 file.deleteOnExit();
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

The first statement defines a File object that references a file named test in the user’s home
directory. Next, is created a directory with this name and including a sub-directory named
files. Below again are created two ordinary files, then the method showFiles() is called. The
result is the following:

[test]
[filer]
file2
file1

The last statement in the test method performs deleteOnExit(), which deletes all files and
directories as this File object has created. The method has probably not a great practical
use, but it is smart for testing to clean up as in this example.

EXERCISE 1

You must write a command, you can call Seek. The command shoul be performed in the
following manner

java -jar Seek.jar directory [text]

where directory is the name of a directory, while text is a search text. The command should
print the absolute file names of all files in the file tree whose root is directory and the file
name contains the search text text. The result could be the following:

The last statement in the test method performs deleteOnExit(), which deletes all files and
directories as this File object has created. The method has probably not a great practical
use, but it is smart for testing to clean up as in this example.

EXERCISE 1

You must write a command, you can call Seek. The command shoul be performed in the
following manner

JAVA 5: FILES AND JAVA IO

16

JAVA.IO

 File file = new File(System.getProperty("user.home") + "/test");
 try
 {
 file.mkdir();
 (new File(file, "filer")).mkdir();
 (new File(file, "filer/file1")).createNewFile();
 (new File(file, "filer/file2")).createNewFile();
 showFiles(file);
 file.deleteOnExit();
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

The first statement defines a File object that references a file named test in the user’s home
directory. Next, is created a directory with this name and including a sub-directory named
files. Below again are created two ordinary files, then the method showFiles() is called. The
result is the following:

[test]
[filer]
file2
file1

The last statement in the test method performs deleteOnExit(), which deletes all files and
directories as this File object has created. The method has probably not a great practical
use, but it is smart for testing to clean up as in this example.

EXERCISE 1

You must write a command, you can call Seek. The command shoul be performed in the
following manner

java -jar Seek.jar directory [text]

where directory is the name of a directory, while text is a search text. The command should
print the absolute file names of all files in the file tree whose root is directory and the file
name contains the search text text. The result could be the following:

where directory is the name of a directory, while text is a search text. The command should
print the absolute file names of all files in the file tree whose root is directory and the file
name contains the search text text. The result could be the following:

JAVA 5: FILES AND JAVA IO

17

java.Io

where for each file are shown the file name, the date when the file was last modified and
the file size. The program must not display the names of directories that match the search
criteria, and if the search criterion is empty (the last parameter is missing), the command
should display all files in the current file tree.

If the first parameter is not the name of an existing directory, the command must simply
print an error message on the screen.

2.2 RANDOM ACCESS FILES

Above I described the class File, and how a File object can be used to get information about
files and directories and to manipulate the file system. In the rest of this chapter, I will
show how to operate on the individual files and thus primarily how to write data to files
and read the content of files. I’ll start with RandomAccessFiles, which are files where you
can both read and write data and thus files that programs can as use as simple databases.
In fact, that kind of files has not so much interest today, but they are good to know, and
to know how a program writes to and reads from files, and that is why I will start with
random access files. They are in Java represented by the class RandomAccessFile. Consider
the following test method:

JAVA 5: FILES AND JAVA IO

17

JAVA.IO

where for each file are shown the file name, the date when the file was last modified and
the file size. The program must not display the names of directories that match the search
criteria, and if the search criterion is empty (the last parameter is missing), the command
should display all files in the current file tree.

If the first parameter is not the name of an existing directory, the command must simply
print an error message on the screen.

2.2 RANDOM ACCESS FILES

Above I described the class File, and how a File object can be used to get information about
files and directories and to manipulate the file system. In the rest of this chapter, I will
show how to operate on the individual files and thus primarily how to write data to files
and read the content of files. I’ll start with RandomAccessFiles, which are files where you
can both read and write data and thus files that programs can as use as simple databases.
In fact, that kind of files has not so much interest today, but they are good to know, and
to know how a program writes to and reads from files, and that is why I will start with
random access files. They are in Java represented by the class RandomAccessFile. Consider
the following test method:

private static void test05()
{
 int t1 = 0x41424344;
 int t2 = 0x45464748;
 int t3 = 0x494a4b4c;
 int t4 = 0x4d4e4f50;
 int t5 = 0x51525354;
 System.out.println(t1);
 System.out.println(t2);
 System.out.println(t3);
 System.out.println(t4);

JAVA 5: FILES AND JAVA IO

18

java.Io

18

JAVA 5: FILES AND JAVA IO

18

JAVA.IO

18

 System.out.println(t5);
 RandomAccessFile dataFile = null;
 try
 {
 dataFile = new RandomAccessFile("numbers.dat", "rw");
 dataFile.writeInt(t1);
 dataFile.writeInt(t2);
 dataFile.writeInt(t3);
 dataFile.writeInt(t4);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (dataFile != null) try { dataFile.close(); } catch (IOException e) {}
 }
 try (RandomAccessFile file = new RandomAccessFile("numbers.dat", "r"))
 {
 int sum = file.readInt();
 sum += file.readInt();
 sum += file.readInt();
 sum += file.readInt();

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 5: FILES AND JAVA IO

19

java.Io
JAVA 5: FILES AND JAVA IO

19

JAVA.IO

 System.out.println(t1 + t2 + t3 + t4);
 System.out.println(sum);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (RandomAccessFile file = new RandomAccessFile("numbers.dat", "rw"))
 {
 file.seek(8);
 file.writeInt(t5);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (RandomAccessFile file = new RandomAccessFile("numbers.dat", "r"))
 {
 long sum = file.readInt();
 sum += file.readInt();
 sum += file.readInt();
 sum += file.readInt();
 System.out.println((long)t1 + t2 + t5 + t4);
 System.out.println(sum);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (RandomAccessFile file = new RandomAccessFile("numbers.dat", "r"))
 {
 byte[] arr = new byte[16];
 file.read(arr);
 String str = new String(arr);
 System.out.println(str);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (RandomAccessFile file = new RandomAccessFile("numbers.dat", "r"))
 {
 double x1 = file.readDouble();
 double x2 = file.readDouble();
 System.out.println(x1);
 System.out.println(x2);
 }

JAVA 5: FILES AND JAVA IO

20

java.Io
JAVA 5: FILES AND JAVA IO

20

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The first thing that happens is the creation of 5 int variables that are written on the screen:

1094861636
1162233672
1229605708
1296977744
1364349780

The numbers are not so interesting, but you should note how they are initialized as
hexadecimal values consisting of 4 bytes. If you do not know hexadecimal numbers, you
can read the appendix to this book.

To be able to write to a file, it must first be opened and must then be closed again. In
this case is defined a variable dataFile of the type RandomAccessFile. It is opened in the try
block with the statement

dataFile = new RandomAccessFile("numbers.dat", "rw");

The statement creates a file under the current directory with the name numbers.dat, while
the last parameter tells how to open the file. Basically, there are two options r and rw (there
are actually two other options). Here rw means you can both read and write to the file,
while r means that you can only read the file. The above statement thus opens the file for
both reading and writing. If the file does not exist, it is created, but otherwise it is just
opened and the file pointer is placed at the beginning of the file, so the next file operation
is carried out from this place.

After the file is opened, the first 4 of the above numbers are written to the file. The class
RandomAccessFile has a method writeInt(), which writes an integer to the file. Exactly what
happens is that the method writes 4 bytes from the location where the file pointer is, and
after the method is performed, the file pointer is moved 4 bytes forward. The result is that
the four writeInt() statements writes 16 bytes to the file, which represents the 4 integers.

The first thing that happens is the creation of 5 int variables that are written on the screen:

JAVA 5: FILES AND JAVA IO

20

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The first thing that happens is the creation of 5 int variables that are written on the screen:

1094861636
1162233672
1229605708
1296977744
1364349780

The numbers are not so interesting, but you should note how they are initialized as
hexadecimal values consisting of 4 bytes. If you do not know hexadecimal numbers, you
can read the appendix to this book.

To be able to write to a file, it must first be opened and must then be closed again. In
this case is defined a variable dataFile of the type RandomAccessFile. It is opened in the try
block with the statement

dataFile = new RandomAccessFile("numbers.dat", "rw");

The statement creates a file under the current directory with the name numbers.dat, while
the last parameter tells how to open the file. Basically, there are two options r and rw (there
are actually two other options). Here rw means you can both read and write to the file,
while r means that you can only read the file. The above statement thus opens the file for
both reading and writing. If the file does not exist, it is created, but otherwise it is just
opened and the file pointer is placed at the beginning of the file, so the next file operation
is carried out from this place.

After the file is opened, the first 4 of the above numbers are written to the file. The class
RandomAccessFile has a method writeInt(), which writes an integer to the file. Exactly what
happens is that the method writes 4 bytes from the location where the file pointer is, and
after the method is performed, the file pointer is moved 4 bytes forward. The result is that
the four writeInt() statements writes 16 bytes to the file, which represents the 4 integers.

The numbers are not so interesting, but you should note how they are initialized as
hexadecimal values consisting of 4 bytes. If you do not know hexadecimal numbers, you
can read the appendix to this book.

To be able to write to a file, it must first be opened and must then be closed again. In
this case is defined a variable dataFile of the type RandomAccessFile. It is opened in the try
block with the statement

JAVA 5: FILES AND JAVA IO

20

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The first thing that happens is the creation of 5 int variables that are written on the screen:

1094861636
1162233672
1229605708
1296977744
1364349780

The numbers are not so interesting, but you should note how they are initialized as
hexadecimal values consisting of 4 bytes. If you do not know hexadecimal numbers, you
can read the appendix to this book.

To be able to write to a file, it must first be opened and must then be closed again. In
this case is defined a variable dataFile of the type RandomAccessFile. It is opened in the try
block with the statement

dataFile = new RandomAccessFile("numbers.dat", "rw");

The statement creates a file under the current directory with the name numbers.dat, while
the last parameter tells how to open the file. Basically, there are two options r and rw (there
are actually two other options). Here rw means you can both read and write to the file,
while r means that you can only read the file. The above statement thus opens the file for
both reading and writing. If the file does not exist, it is created, but otherwise it is just
opened and the file pointer is placed at the beginning of the file, so the next file operation
is carried out from this place.

After the file is opened, the first 4 of the above numbers are written to the file. The class
RandomAccessFile has a method writeInt(), which writes an integer to the file. Exactly what
happens is that the method writes 4 bytes from the location where the file pointer is, and
after the method is performed, the file pointer is moved 4 bytes forward. The result is that
the four writeInt() statements writes 16 bytes to the file, which represents the 4 integers.

The statement creates a file under the current directory with the name numbers.dat, while
the last parameter tells how to open the file. Basically, there are two options r and rw (there
are actually two other options). Here rw means you can both read and write to the file,
while r means that you can only read the file. The above statement thus opens the file for
both reading and writing. If the file does not exist, it is created, but otherwise it is just
opened and the file pointer is placed at the beginning of the file, so the next file operation
is carried out from this place.

After the file is opened, the first 4 of the above numbers are written to the file. The class
RandomAccessFile has a method writeInt(), which writes an integer to the file. Exactly what
happens is that the method writes 4 bytes from the location where the file pointer is, and
after the method is performed, the file pointer is moved 4 bytes forward. The result is that
the four writeInt() statements writes 16 bytes to the file, which represents the 4 integers.

JAVA 5: FILES AND JAVA IO

21

java.Io

21

After the four statements is performed, the file is closed. It is important, as the writeInt()
statements writes to a memory buffer. The content of this buffer is first written physical to
the file when the buffer is full or the file is closed. Another reason for the file to be closed
is that you thereby releases the resources allocated to the file. Closing a file with the close()
is important and to ensure that the statement is executed, it is placed in a finally block that
is performed regardless of whether an exception occurs or not.

The above actually defines a pattern for how to treat files:

1. open the file
2. performs the wanted file operations
3. close the filen

After having written four numbers to the file, it is opened again to read the contents:

JAVA 5: FILES AND JAVA IO

21

JAVA.IO

21

After the four statements is performed, the file is closed. It is important, as the writeInt()
statements writes to a memory buffer. The content of this buffer is first written physical to
the file when the buffer is full or the file is closed. Another reason for the file to be closed
is that you thereby releases the resources allocated to the file. Closing a file with the close()
is important and to ensure that the statement is executed, it is placed in a finally block that
is performed regardless of whether an exception occurs or not.

The above actually defines a pattern for how to treat files:

1. open the file
2. performs the wanted file operations
3. close the filen

After having written four numbers to the file, it is opened again to read the contents:

try (RandomAccessFile file = new RandomAccessFile("tal.dat", "r"))

http://s.bookboon.com/elearningforkids

JAVA 5: FILES AND JAVA IO

22

java.Io

This time the file is opened in a statement after the try. It is a syntax that is really just
a short way of writing the above, but it guarantees that the file will be closed when the
program exits the try block. The syntax is in most cases preferable, first, it is actually shorter
and more readable, and secondly you are sure that you remember to close the file. After
the file is opened, it performs a readInt() operation four times that reads four integers in
the file, and the sum of these numbers is determined and printed along with the sum of
the four numbers that are written in the file. The idea is that you have to see that you get
the same result:

JAVA 5: FILES AND JAVA IO

22

JAVA.IO

This time the file is opened in a statement after the try. It is a syntax that is really just
a short way of writing the above, but it guarantees that the file will be closed when the
program exits the try block. The syntax is in most cases preferable, first, it is actually shorter
and more readable, and secondly you are sure that you remember to close the file. After
the file is opened, it performs a readInt() operation four times that reads four integers in
the file, and the sum of these numbers is determined and printed along with the sum of
the four numbers that are written in the file. The idea is that you have to see that you get
the same result:

4783678760
4783678760

and thus it is the same four numbers that are read as the four numbers originally written in
the file. You should note that the method readInt() reads 4 bytes from the location where
the file pointer is and converts these 4 bytes to an int. After the method is performed, the
file pointer is moved 4 bytes forward. The method interprets therefore not what the 4 bytes
contains, and where the result is a “sense” integer. 4 bytes can be interpreted as an integer,
no matter what they contains. As a next step the file is opened again for reading and writing:

try (RandomAccessFile file = new RandomAccessFile("tal.dat", "rw"))
{
 file.seek(8);
 file.writeInt(t5);
}

Then the file pointer is moved 8 bytes forward, which means that it points at the start of
the third number in the file. The method then writes another number to the file, which
means that the third number is overwritten, and the value is now the value of t5. After
these statements are executed, the file is opened again for reading, and the sum of the
four numbers determined again, and you will find that you get a different result, but the
correct result:

4918422832
4918422832

In a RandomAccessFile you can thus use the method seek() to move the file pointer to a
random position and read or write from that position.

and thus it is the same four numbers that are read as the four numbers originally written in
the file. You should note that the method readInt() reads 4 bytes from the location where
the file pointer is and converts these 4 bytes to an int. After the method is performed, the
file pointer is moved 4 bytes forward. The method interprets therefore not what the 4 bytes
contains, and where the result is a “sense” integer. 4 bytes can be interpreted as an integer,
no matter what they contains. As a next step the file is opened again for reading and writing:

JAVA 5: FILES AND JAVA IO

22

JAVA.IO

This time the file is opened in a statement after the try. It is a syntax that is really just
a short way of writing the above, but it guarantees that the file will be closed when the
program exits the try block. The syntax is in most cases preferable, first, it is actually shorter
and more readable, and secondly you are sure that you remember to close the file. After
the file is opened, it performs a readInt() operation four times that reads four integers in
the file, and the sum of these numbers is determined and printed along with the sum of
the four numbers that are written in the file. The idea is that you have to see that you get
the same result:

4783678760
4783678760

and thus it is the same four numbers that are read as the four numbers originally written in
the file. You should note that the method readInt() reads 4 bytes from the location where
the file pointer is and converts these 4 bytes to an int. After the method is performed, the
file pointer is moved 4 bytes forward. The method interprets therefore not what the 4 bytes
contains, and where the result is a “sense” integer. 4 bytes can be interpreted as an integer,
no matter what they contains. As a next step the file is opened again for reading and writing:

try (RandomAccessFile file = new RandomAccessFile("tal.dat", "rw"))
{
 file.seek(8);
 file.writeInt(t5);
}

Then the file pointer is moved 8 bytes forward, which means that it points at the start of
the third number in the file. The method then writes another number to the file, which
means that the third number is overwritten, and the value is now the value of t5. After
these statements are executed, the file is opened again for reading, and the sum of the
four numbers determined again, and you will find that you get a different result, but the
correct result:

4918422832
4918422832

In a RandomAccessFile you can thus use the method seek() to move the file pointer to a
random position and read or write from that position.

Then the file pointer is moved 8 bytes forward, which means that it points at the start of
the third number in the file. The method then writes another number to the file, which
means that the third number is overwritten, and the value is now the value of t5. After
these statements are executed, the file is opened again for reading, and the sum of the
four numbers determined again, and you will find that you get a different result, but the
correct result:

JAVA 5: FILES AND JAVA IO

22

JAVA.IO

This time the file is opened in a statement after the try. It is a syntax that is really just
a short way of writing the above, but it guarantees that the file will be closed when the
program exits the try block. The syntax is in most cases preferable, first, it is actually shorter
and more readable, and secondly you are sure that you remember to close the file. After
the file is opened, it performs a readInt() operation four times that reads four integers in
the file, and the sum of these numbers is determined and printed along with the sum of
the four numbers that are written in the file. The idea is that you have to see that you get
the same result:

4783678760
4783678760

and thus it is the same four numbers that are read as the four numbers originally written in
the file. You should note that the method readInt() reads 4 bytes from the location where
the file pointer is and converts these 4 bytes to an int. After the method is performed, the
file pointer is moved 4 bytes forward. The method interprets therefore not what the 4 bytes
contains, and where the result is a “sense” integer. 4 bytes can be interpreted as an integer,
no matter what they contains. As a next step the file is opened again for reading and writing:

try (RandomAccessFile file = new RandomAccessFile("tal.dat", "rw"))
{
 file.seek(8);
 file.writeInt(t5);
}

Then the file pointer is moved 8 bytes forward, which means that it points at the start of
the third number in the file. The method then writes another number to the file, which
means that the third number is overwritten, and the value is now the value of t5. After
these statements are executed, the file is opened again for reading, and the sum of the
four numbers determined again, and you will find that you get a different result, but the
correct result:

4918422832
4918422832

In a RandomAccessFile you can thus use the method seek() to move the file pointer to a
random position and read or write from that position.
In a RandomAccessFile you can thus use the method seek() to move the file pointer to a
random position and read or write from that position.

JAVA 5: FILES AND JAVA IO

23

java.Io

The file is opened for reading again:

JAVA 5: FILES AND JAVA IO

23

JAVA.IO

The file is opened for reading again:

try (RandomAccessFile file = new RandomAccessFile("tal.dat", "r"))
{
 byte[] arr = new byte[16];
 file.read(arr);
 String str = new String(arr);
 System.out.println(str);
}

and the code creates an array with room for 16 bytes (that exactly matches the contents
of the file – if you examine its properties with Files you can see that it takes up 16 bytes).
Next, read the file with the method read() and the array as a parameter. This method reads
a maximum of 16 bytes in the file (less if there are not 16 bytes after the file pointer). The
16 bytes are used to initialize a string, and the result is:

ABCDEFGHQRSTMNOP

The goal is to show that even though the file contains four integers which total takes up 16
bytes, it can be interpreted as anything, and it is the program that reads the file’s contents
that determines how the results should be interpreted. It is further illustrated with the last
statements in the test method that reads the contents of the file and interprets it as two
numbers of the type double.

HISTORY AGAIN

In the last example in the the book Java 2 I showed a program where you could enter
information about historic people and save the information by object serialization. I will
show a different version of the program where the difference is that the persons instead are
stored in a RandomAccessFile. Let me say immediately that this solution has no advantages,
and the goal is only to show an example of a file containing records of fixed length, formerly
a typical application of files.

The starting point was the following class, which represents a historic person (where I have
not shown the get and set methods):

public class Person implements Comparable<Person>, Serializable
{
 private int recnr = -1; // idenfification of a person
 private String name; // the person's name
 private String job; // the person's position
 private String text; // a description
 private int from; // birth, start of reign or otherwise
 private int to; // year of when the person is dead

and the code creates an array with room for 16 bytes (that exactly matches the contents
of the file – if you examine its properties with Files you can see that it takes up 16 bytes).
Next, read the file with the method read() and the array as a parameter. This method reads
a maximum of 16 bytes in the file (less if there are not 16 bytes after the file pointer). The
16 bytes are used to initialize a string, and the result is:

JAVA 5: FILES AND JAVA IO

23

JAVA.IO

The file is opened for reading again:

try (RandomAccessFile file = new RandomAccessFile("tal.dat", "r"))
{
 byte[] arr = new byte[16];
 file.read(arr);
 String str = new String(arr);
 System.out.println(str);
}

and the code creates an array with room for 16 bytes (that exactly matches the contents
of the file – if you examine its properties with Files you can see that it takes up 16 bytes).
Next, read the file with the method read() and the array as a parameter. This method reads
a maximum of 16 bytes in the file (less if there are not 16 bytes after the file pointer). The
16 bytes are used to initialize a string, and the result is:

ABCDEFGHQRSTMNOP

The goal is to show that even though the file contains four integers which total takes up 16
bytes, it can be interpreted as anything, and it is the program that reads the file’s contents
that determines how the results should be interpreted. It is further illustrated with the last
statements in the test method that reads the contents of the file and interprets it as two
numbers of the type double.

HISTORY AGAIN

In the last example in the the book Java 2 I showed a program where you could enter
information about historic people and save the information by object serialization. I will
show a different version of the program where the difference is that the persons instead are
stored in a RandomAccessFile. Let me say immediately that this solution has no advantages,
and the goal is only to show an example of a file containing records of fixed length, formerly
a typical application of files.

The starting point was the following class, which represents a historic person (where I have
not shown the get and set methods):

public class Person implements Comparable<Person>, Serializable
{
 private int recnr = -1; // idenfification of a person
 private String name; // the person's name
 private String job; // the person's position
 private String text; // a description
 private int from; // birth, start of reign or otherwise
 private int to; // year of when the person is dead

The goal is to show that even though the file contains four integers which total takes up 16
bytes, it can be interpreted as anything, and it is the program that reads the file’s contents
that determines how the results should be interpreted. It is further illustrated with the last
statements in the test method that reads the contents of the file and interprets it as two
numbers of the type double.

HISTORY AGAIN

In the last example in the the book Java 2 I showed a program where you could enter
information about historic people and save the information by object serialization. I will
show a different version of the program where the difference is that the persons instead are
stored in a RandomAccessFile. Let me say immediately that this solution has no advantages,
and the goal is only to show an example of a file containing records of fixed length, formerly
a typical application of files.

The starting point was the following class, which represents a historic person (where I have
not shown the get and set methods):

JAVA 5: FILES AND JAVA IO

23

JAVA.IO

The file is opened for reading again:

try (RandomAccessFile file = new RandomAccessFile("tal.dat", "r"))
{
 byte[] arr = new byte[16];
 file.read(arr);
 String str = new String(arr);
 System.out.println(str);
}

and the code creates an array with room for 16 bytes (that exactly matches the contents
of the file – if you examine its properties with Files you can see that it takes up 16 bytes).
Next, read the file with the method read() and the array as a parameter. This method reads
a maximum of 16 bytes in the file (less if there are not 16 bytes after the file pointer). The
16 bytes are used to initialize a string, and the result is:

ABCDEFGHQRSTMNOP

The goal is to show that even though the file contains four integers which total takes up 16
bytes, it can be interpreted as anything, and it is the program that reads the file’s contents
that determines how the results should be interpreted. It is further illustrated with the last
statements in the test method that reads the contents of the file and interprets it as two
numbers of the type double.

HISTORY AGAIN

In the last example in the the book Java 2 I showed a program where you could enter
information about historic people and save the information by object serialization. I will
show a different version of the program where the difference is that the persons instead are
stored in a RandomAccessFile. Let me say immediately that this solution has no advantages,
and the goal is only to show an example of a file containing records of fixed length, formerly
a typical application of files.

The starting point was the following class, which represents a historic person (where I have
not shown the get and set methods):

public class Person implements Comparable<Person>, Serializable
{
 private int recnr = -1; // idenfification of a person
 private String name; // the person's name
 private String job; // the person's position
 private String text; // a description
 private int from; // birth, start of reign or otherwise
 private int to; // year of when the person is dead

JAVA 5: FILES AND JAVA IO

24

java.Io

24

JAVA 5: FILES AND JAVA IO

24

JAVA.IO

24

 public Person(String name, String job, String text, int from, int to)
 {
 this.name = name;
 this.job = job;
 this.text = text;
 this.from = from;
 this.to = to;
 }

 public Person(int recnr, String navn, String job, String tekst, int fra, int til)
 {
 this(navn, job, tekst, fra, til);
 this.recnr = recnr;
 }

Compared to the previous version of the program I have made a single change, since the
class is extended with an int variable named recnr. There are also defined both get and set
methods for that variable, and that should contain a person’s location in the file. Finally is
added an extra constructor. The class is defined Serializable, and as Person objects no longer
should be serialized, it could be deleted.

Compared to the previous version of the program I have made a single change, since the
class is extended with an int variable named recnr. There are also defined both get and set
methods for that variable, and that should contain a person’s location in the file. Finally is
added an extra constructor. The class is defined Serializable, and as Person objects no longer
should be serialized, it could be deleted.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 5: FILES AND JAVA IO

25

java.Io

The file must contain objects of the type Person, but to be able to read these objects again
(place the file pointer where a person starts), they must have a fixed size. Because the first
three of the variables are strings, they do not have a fixed length. Therefore, it is necessary to
select a maximum length of each of these values. As you will see in the next book, the same
is necessary if Person objects should be stored in a database, so in fact the limitation is quite
usual. The following class defines a file (a database) to Person objects or individual records:

JAVA 5: FILES AND JAVA IO

25

JAVA.IO

The file must contain objects of the type Person, but to be able to read these objects again
(place the file pointer where a person starts), they must have a fixed size. Because the first
three of the variables are strings, they do not have a fixed length. Therefore, it is necessary to
select a maximum length of each of these values. As you will see in the next book, the same
is necessary if Person objects should be stored in a database, so in fact the limitation is quite
usual. The following class defines a file (a database) to Person objects or individual records:

package history;

import java.io.*;
import palib.util.*;
public class PersonDB
{
 public static final int NLENGTH = 50;
 public static final int JLENGTH = 30;
 public static final int TLENGTH = 500;

 private static final int RLENGTH = 2 * (NLENGTH + JLENGTH + TLENGTH) + 12;
 private RandomAccessFile file = null;

 public PersonDB(String path) throws IOException
 {
 file = new RandomAccessFile(path, "rw");
 }

 public void append(Person pers) throws IOException
 {
 pers.setRecnr(length());
 file.seek(file.length());
 write(pers);
 }

 public int length() throws IOException
 {
 return (int) file.length() / RLENGTH;
 }

 public Person select(int recnr) throws IOException
 {
 if (recnr < 0 || recnr >= length())
 throw new IOException("Illegal recordnumber");
 file.seek(recnr * RLENGTH);
 return read();
 }

JAVA 5: FILES AND JAVA IO

26

java.Io
JAVA 5: FILES AND JAVA IO

26

JAVA.IO

 public void update(Person pers) throws IOException
 {
 if (pers.getRecnr() < 0 || pers.getRecnr() >= length())
 throw new IOException("Illegal record number");
 file.seek(pers.getRecnr() * RLENGTH);
 int rec = file.readInt();
 if (rec != pers.getRecnr()) throw new IOException("Illegal recordnumber");
 file.seek(pers.getRecnr() * RLENGTH);
 write(pers);
 }

 public void delete(Person pers) throws IOException
 {
 if (pers.getRecnr() < 0 || pers.getRecnr() >= length())
 throw new IOException("Illegal recordnumber");
 file.seek(pers.getRecnr() * RLENGTH);
 file.writeInt(-1);
 }

 public void close()
 {
 try
 {
 if (file != null) file.close();
 }
 catch (IOException ioe)
 {
 }
 file = null;
 }

 private void write(Person pers) throws IOException
 {
 file.writeInt(pers.getRecnr());
 file.writeChars(Str.left(Str.cut(pers.getName(), NLENGTH), NLENGTH, ‘ ‘));
 file.writeChars(Str.left(Str.cut(pers.getJob(), JLENGTH), JLENGTH, ‘ ‘));
 file.writeChars(Str.left(Str.cut(pers.getText(), TLENGTH), TLENGTH, ‘ ‘));
 file.writeInt(pers.getFrom());
 file.writeInt(pers.getTo());
 }

 private Person read() throws IOException
 {
 int rec = file.readInt();
 if (rec == -1) return null;
 String navn = read(NLENGTH);

JAVA 5: FILES AND JAVA IO

27

java.Io

27

JAVA 5: FILES AND JAVA IO

27

JAVA.IO

27

 String job = read(JLENGTH);
 String tekst = read(TLENGTH);
 int fra = file.readInt();
 int til = file.readInt();
 return new Person(rec, navn, job, tekst, fra, til);
 }

 private String read(int length) throws IOException
 {
 StringBuilder buff = new StringBuilder();
 for (int i = 0; i < length; ++i) buff.append(file.readChar());
 return buff.toString().trim();
 }
}

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 5: FILES AND JAVA IO

28

java.Io

The class starts with defining some constants that specifies that the name has of maximum
of 50 characters, that the position has a maximum 30 characters, and the description a
maximum of 500 characters. Finally is define a constant that indicates the size of a record.
The sum of these three constants are multiplied by 2, because a character (a char) occupies 2
bytes. The last number 12 is the size of three integers. This means that a Person record always
occupies 1172 bytes in the file. You should note that in most cases it will be considerably
more than necessary and that the file will thus contain some wasted space, but these are
the conditions for a file of this type. This is the price that you must pay to be able to read
a record stored at a specific location.

The class has an instance variable of the type RandomAccessFile and the constructor opens
the file for read and write. Note that the constructor raises an exception if the file can not
be opened. The class offers the following services:

 - length(), that returns the number of records in the file
 - select(), that returns the record with a certain record number
 - append(), that adds a new record to the file
 - update(), that modify the content of a certain record
 - delete(), that delete a certain record
 - close(), that closes the file

The implementation of these methods is generally without problems, but delete() is an
exception. The question is what should happens when you delete a record, as you logically
get a “hole” in the file. In practice, there are several solutions. For example you could
move the last record to the place where the deleted record was and then reduce the length
of the file with the size of a record. The main problem with this strategy is, that a record
in this way must change the record number, and the number then can not be used to
identify a certaing record – the record number can not be the key. In this case, I will use a
strategy where the record number set to -1, thus indicating that the record is deleted. The
disadvantage of this approach is that the file that will contain a number of “dead” records,
and you should therefore test whether a record is deleted when you reads in the file. Has
deleted many records, it may also mean that the file size is unnecessarily large. The problem
can be solved by reusing deleted records when adding new records (it is not done in this
case). You must specifically noting, how the method delete() are implemented, and how to
delete a record by writing the number -1 to the file. When the record number is the first
field, it corresponds exactly to write the number -1 to the file.

JAVA 5: FILES AND JAVA IO

29

java.Io

The method append() have as a parameter, the Person object to be added to the file. The
method starts by allocating the object’s record number as the next record in the file,
and then set the file pointer to the end of the file. The object is then written to the file
with the method write(). Here you must notice how to save a String that happens with
writeChars(). First are used two methods from PaLib that ensures that the string is not too
long, and in the case where the String is shorter than maximum, it is filled with blanks to
the maximum width.

The method update() works in principle in the same way, only is used the Person object’s
record number to position the file pointer in the right place. The method first reads an int to
test whether it is the right record number, and if it is the case, writes the updates to the file.

The previous version of the program has a class called Persons, and it is rewritten as shown
below, because the program instead of store Person objects by serilalization uses an object
of type PersonDB. The class is expanded with a new instance variable called path, which
is initialized by the constructor and contains the file name, but otherwise the class works
in principle in the same way as in the first version of the program. The various methods
are of course changed, but the difference is only that they store the objects in a different
way. I’ve shown the whole class below, and you should study the code and how the class
PersonDB is used:

JAVA 5: FILES AND JAVA IO

29

JAVA.IO

The method append() have as a parameter, the Person object to be added to the file. The
method starts by allocating the object’s record number as the next record in the file,
and then set the file pointer to the end of the file. The object is then written to the file
with the method write(). Here you must notice how to save a String that happens with
writeChars(). First are used two methods from PaLib that ensures that the string is not too
long, and in the case where the String is shorter than maximum, it is filled with blanks to
the maximum width.

The method update() works in principle in the same way, only is used the Person object’s
record number to position the file pointer in the right place. The method first reads an int to
test whether it is the right record number, and if it is the case, writes the updates to the file.

The previous version of the program has a class called Persons, and it is rewritten as shown
below, because the program instead of store Person objects by serilalization uses an object
of type PersonDB. The class is expanded with a new instance variable called path, which
is initialized by the constructor and contains the file name, but otherwise the class works
in principle in the same way as in the first version of the program. The various methods
are of course changed, but the difference is only that they store the objects in a different
way. I’ve shown the whole class below, and you should study the code and how the class
PersonDB is used:

package history;

import java.util.*;
import java.io.*;

public class Persons implements Iterable<Person>
{
 private static String path;
 private ArrayList<Person> list;

 public Persons(String path) throws IOException
 {
 this.path = path;
 load();
 }

 public Iterator<Person> iterator()
 {
 return list.iterator();
 }

JAVA 5: FILES AND JAVA IO

30

java.Io

30

JAVA 5: FILES AND JAVA IO

30

JAVA.IO

30

 public boolean add(Person pers)
 {
 PersonDB db = null;
 try
 {
 db = new PersonDB(path);
 db.append(pers);
 list.add(pers);
 return true;
 }
 catch (IOException ex)
 {
 return false;
 }
 finally
 {
 if (db != null) db.close();
 }
 }

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 5: FILES AND JAVA IO

31

java.Io
JAVA 5: FILES AND JAVA IO

31

JAVA.IO

 public boolean remove(Person pers)
 {
 PersonDB db = null;
 try
 {
 db = new PersonDB(path);
 db.delete(pers);
 return list.remove(pers);
 }
 catch (IOException ex)
 {
 return false;
 }
 finally
 {
 if (db != null) db.close();
 }
 }

 public boolean update(Person pers)
 {
 PersonDB db = null;
 try
 {
 db = new PersonDB(path);
 db.update(pers);
 return true;
 }
 catch (IOException ex)
 {
 return false;
 }
 finally
 {
 if (db != null) db.close();
 }
 }

 private void initialize()
 {
 list = new ArrayList();
 for (int i = 0;i < navne.length; ++i)
 {
 String job = navne[i][0].equals("Margrete d. 1.") ||
 navne[i][0].equals("Margrethe d. 2.") ? "Queen" : "King";
 int fra = navne[i][1].length() > 0 ? Integer.parseInt(navne[i][1]) : -9999;
 int til = navne[i][2].length() > 0 ? Integer.parseInt(navne[i][2]) : 9999;
 list.add(new Person(navne[i][0], job, "", fra, til));

JAVA 5: FILES AND JAVA IO

32

java.Io
JAVA 5: FILES AND JAVA IO

32

JAVA.IO

 }
 store();
 }

 private void load() throws IOException
 {
 File file = new File(path);
 if (file.exists() && file.isFile())
 {
 PersonDB db = null;
 try
 {
 list = new ArrayList();
 db = new PersonDB(path);
 for (int rec = 0; rec < db.length(); ++rec)
 {
 Person pers = db.select(rec);
 if (pers != null) list.add(pers);
 }
 }
 finally
 {
 if (db != null) db.close();
 }
 }
 else initialize();
 Collections.sort(list);
 }

 private void store()
 {
 PersonDB db = null;
 try
 {
 db = new PersonDB(path);
 for (Person pers : list) db.append(pers);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (db != null) db.close();
 }
 }

JAVA 5: FILES AND JAVA IO

33

java.Io

33

JAVA 5: FILES AND JAVA IO

33

JAVA.IO

33

 private static String[][] navne = {
 { "Gorm den Gamle", "", "958" },
 { "Harald Blåtand", "958", "986" },
 …
 };
}

Then there are the classes for the user interface, which I have not shown, and they are
basically not changed compared to the first version of the program.

PROBLEM 1

You must in this problem write a program similar to the program above, but the program
must instead maintain a product database. A product is described with four fields:

public class Product
{
 private int pnr; // product number
 private String name; // product name
 private short units; // units in stock
 private float price; // unit price

Then there are the classes for the user interface, which I have not shown, and they are
basically not changed compared to the first version of the program.

PROBLEM 1

You must in this problem write a program similar to the program above, but the program
must instead maintain a product database. A product is described with four fields:

JAVA 5: FILES AND JAVA IO

33

JAVA.IO

33

 private static String[][] navne = {
 { "Gorm den Gamle", "", "958" },
 { "Harald Blåtand", "958", "986" },
 …
 };
}

Then there are the classes for the user interface, which I have not shown, and they are
basically not changed compared to the first version of the program.

PROBLEM 1

You must in this problem write a program similar to the program above, but the program
must instead maintain a product database. A product is described with four fields:

public class Product
{
 private int pnr; // product number
 private String name; // product name
 private short units; // units in stock
 private float price; // unit price

http://s.bookboon.com/EOT

JAVA 5: FILES AND JAVA IO

34

java.Io

The product number is a sequential number starting with 0 (the first product should have
product number 0), and each time a new product is created, it is assigned the next number,
which thus corresponds to the product’s record number in a RandomAccessFile. The name
is a String that shall not exceed 100 characters. The units in stock must be a non-negative
integer, and the unit price must be a positiv number (a float).

Start for example by writing the class Product finished. It is a simple class that should not
contain much more than get and set methods for the four variables.

The program’s model can be represented by the following class:

JAVA 5: FILES AND JAVA IO

34

JAVA.IO

The product number is a sequential number starting with 0 (the first product should have
product number 0), and each time a new product is created, it is assigned the next number,
which thus corresponds to the product’s record number in a RandomAccessFile. The name
is a String that shall not exceed 100 characters. The units in stock must be a non-negative
integer, and the unit price must be a positiv number (a float).

Start for example by writing the class Product finished. It is a simple class that should not
contain much more than get and set methods for the four variables.

The program’s model can be represented by the following class:

package productsprogram;

import java.io.*;
import java.util.*;
import palib.util.*;

/**
 * Class which represents a product database consisting of Product objects.
 * The first 4 bytes in the file is an integer that is interpreted as a signature
 * for the file.
 * When the file is opened, you can test this signature and thus get an indication
 * that the file is a product database.
 */
public class ProductDB
{
 private static final int SIGNATUR = 0x12345678;
 private static final int NAMESIZE = 100;
 private static final int RECORDSIZE = 2 * NAMESIZE + 10;

 private String path;

 /**
 * Constructor that initializes the file's path. The constructor does not open
 * the file, but validates the name and creates possible the file.
 * If the Name can not be properly validated, the construction raises an
 * exception. Following are validated
 * If the file path eksistener is validated for the case of an ordinary file.
 * If it this the case testes whether the file start with the correct
 * signature, and is this not the case the constructor raises an exception.
 * If the file path does not exist, the constructor creates a file with the
 * correct signature.
 * @param path The files path
 * @throws IOException If the path could not be correct validated
 */
 public ProductDB(String path) throws IOException {}

JAVA 5: FILES AND JAVA IO

35

java.Io
JAVA 5: FILES AND JAVA IO

35

JAVA.IO

 /**
 * Adds a new prooduct to the file. The method assigns the product a product
 * number that is the next record in the file. Thus the first product get product
 * number 0.
 * @param prod The product to be added to the file.
 * @throws IOException If the product could not be added
 */
 public void add(Product prod) throws IOException {}

 /**
 * Returns the product with product number pnr. If the product is not found, the
 * method raises an exception.
 * @param pnr The product number
 * @return The product with product number pnr
 * @throws IOException If the product is not found
 */
 public Product select(int pnr) throws IOException {}
 /**
 * Returns all products in the file.
 * @return AAll products in the file
 */
 public ArrayList<Product> select() {}
 /**
 * Updates a product. The method tests whether the record on that position has
 * the correct
 * product number. If not raised an exception.
 * @param prod The product to be updated
 * @throws IOException If the product is not found
 */
 public void update(Product prod) throws IOException {}

 /**
 * Deletes the product whose product number is pnr. The product is deleted by
 * writing the -i for product number.
 * @param pnr Product number for the product to be deleted
 * @throws IOException If the product is not found
 */
 public void delete(int pnr) throws IOException {}
}

You should note that each of the class’s methods should both open and close the file. You
should also note that the first 4 bytes in the file is a signature, which you must take into
account when determining the location of each record.

You should note that each of the class’s methods should both open and close the file. You
should also note that the first 4 bytes in the file is a signature, which you must take into
account when determining the location of each record.

JAVA 5: FILES AND JAVA IO

36

java.Io

36

The application’s main window should primarily display a list box with a list of all products:

Clicking on the button, you get a window where you can create a new product.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 5: FILES AND JAVA IO

37

java.Io

If you double-click on an product in the list box, you get the same window, where you
can edit the product:

2.3 BYTE STREAMS

The package java.io contains several classes to byte streams and thus streams, which consists
of a sequence of bytes, and basically there are the following classes:

 - ByteArrayInputStream ByteArrayOutputStream
 - FileInputStream FileOutputStream
 - ObjectInputStream ObjectOutputStream
 - PipedInputStream PipedOutputStream
 - FilterInputStream FilterOutputStream

Here, the left column are input classes, which are all classes derived from an abstract class
InputStream. The right column are classes for output, and is derived from an abstract
class OutputStream. In the following I will show examples that use these classes – except
PipedInputStream and PipedOutputStream that is postponed.

BYTEARRAYINPUTSTREAM AND BYTEARRAYOUTPUTSTREAM

One can think of a ByteArrayOutputStream as memory representation of an OutputStream and
a ByteArrayInputStream as a memory representation of an InputStream. The typical use of these
classes is to load the contents of a file (for example a picture) to a ByteArrayOutputStream
where the file’s content then can be manipulated in memory. Then the content is streamed
to a file using a ByteArrayInputStream. Consider as an example, the following test method:

JAVA 5: FILES AND JAVA IO

37

JAVA.IO

If you double-click on an product in the list box, you get the same window, where you
can edit the product:

2.3 BYTE STREAMS

The package java.io contains several classes to byte streams and thus streams, which consists
of a sequence of bytes, and basically there are the following classes:

 - ByteArrayInputStream ByteArrayOutputStream
 - FileInputStream FileOutputStream
 - ObjectInputStream ObjectOutputStream
 - PipedInputStream PipedOutputStream
 - FilterInputStream FilterOutputStream

Here, the left column are input classes, which are all classes derived from an abstract class
InputStream. The right column are classes for output, and is derived from an abstract
class OutputStream. In the following I will show examples that use these classes – except
PipedInputStream and PipedOutputStream that is postponed.

BYTEARRAYINPUTSTREAM AND BYTEARRAYOUTPUTSTREAM

One can think of a ByteArrayOutputStream as memory representation of an OutputStream and
a ByteArrayInputStream as a memory representation of an InputStream. The typical use of these
classes is to load the contents of a file (for example a picture) to a ByteArrayOutputStream
where the file’s content then can be manipulated in memory. Then the content is streamed
to a file using a ByteArrayInputStream. Consider as an example, the following test method:

private static void test06()
{
 try (RandomAccessFile file = new RandomAccessFile("numbers1.dat", "rw"))
 {
 for (int i = 1; i <= 10; ++i) file.writeInt(i);
 }

JAVA 5: FILES AND JAVA IO

38

java.Io
JAVA 5: FILES AND JAVA IO

38

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
 ByteArrayOutputStream streamOut = new ByteArrayOutputStream();
 try (RandomAccessFile file = new RandomAccessFile("numbers1.dat", "r"))
 {
 for (int i = 0; i < file.length(); ++i) streamOut.write(file.readByte());
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 byte[] bytes = streamOut.toByteArray();
 for (int i = 0; i < bytes.length; ++i) if ((i + 2) % 4 == 0) bytes[i] = 1;
 ByteArrayInputStream streamIn = new ByteArrayInputStream(bytes);
 try (RandomAccessFile file = new RandomAccessFile("numbers1.dat", "rw"))
 {
 for (int b = streamIn.read(); b != -1; b = streamIn.read()) file.writeByte(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (RandomAccessFile file = new RandomAccessFile("numbers1.dat", "r"))
 {
 for (int i = 0, n = (int)(file.length() / 4); i < n; ++i)
 System.out.println(file.readInt());
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method starts by creating a RandomAccessFile with the numbers from 1 to 10. The
hexadecimal content of the file is:

0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000a

The method starts by creating a RandomAccessFile with the numbers from 1 to 10. The
hexadecimal content of the file is:

JAVA 5: FILES AND JAVA IO

38

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
 ByteArrayOutputStream streamOut = new ByteArrayOutputStream();
 try (RandomAccessFile file = new RandomAccessFile("numbers1.dat", "r"))
 {
 for (int i = 0; i < file.length(); ++i) streamOut.write(file.readByte());
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 byte[] bytes = streamOut.toByteArray();
 for (int i = 0; i < bytes.length; ++i) if ((i + 2) % 4 == 0) bytes[i] = 1;
 ByteArrayInputStream streamIn = new ByteArrayInputStream(bytes);
 try (RandomAccessFile file = new RandomAccessFile("numbers1.dat", "rw"))
 {
 for (int b = streamIn.read(); b != -1; b = streamIn.read()) file.writeByte(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (RandomAccessFile file = new RandomAccessFile("numbers1.dat", "r"))
 {
 for (int i = 0, n = (int)(file.length() / 4); i < n; ++i)
 System.out.println(file.readInt());
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method starts by creating a RandomAccessFile with the numbers from 1 to 10. The
hexadecimal content of the file is:

0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000a

JAVA 5: FILES AND JAVA IO

39

java.Io

39

and the fills 40 bytes. As the next step the content of the file is loaded and streamed to
a ByteArrayOutputStream named streamOut. The result is that the file’s content are now in
memory as streamOut.

Then the content of streamOut is referenced with a byte array, and every fourth byte is modified:

JAVA 5: FILES AND JAVA IO

39

JAVA.IO

39

and the fills 40 bytes. As the next step the content of the file is loaded and streamed to
a ByteArrayOutputStream named streamOut. The result is that the file’s content are now in
memory as streamOut.

Then the content of streamOut is referenced with a byte array, and every fourth byte is modified:

byte[] bytes = streamOut.toByteArray();
for (int i = 0; i < bytes.length; ++i) if ((i + 2) % 4 == 0) bytes[i] = 1;

The result is that the 40 bytes representing 10 integers now are the numbers 257, 258, …, 266:

0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000106
0x00000107
0x00000108
0x00000109
0x0000010a

The result is that the 40 bytes representing 10 integers now are the numbers 257, 258, …, 266:

JAVA 5: FILES AND JAVA IO

39

JAVA.IO

39

and the fills 40 bytes. As the next step the content of the file is loaded and streamed to
a ByteArrayOutputStream named streamOut. The result is that the file’s content are now in
memory as streamOut.

Then the content of streamOut is referenced with a byte array, and every fourth byte is modified:

byte[] bytes = streamOut.toByteArray();
for (int i = 0; i < bytes.length; ++i) if ((i + 2) % 4 == 0) bytes[i] = 1;

The result is that the 40 bytes representing 10 integers now are the numbers 257, 258, …, 266:

0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000106
0x00000107
0x00000108
0x00000109
0x0000010a

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 5: FILES AND JAVA IO

40

java.Io

After each byte is manipulated the arrray is encapsulated in a ByteArrayInputStream, and
the result is written back to the file.

The above example of using a ByteArrayOutputStream and a ByteArrayInputStream is not
typical and should only show the syntax. Later I will show examples, where these classes
are important.

FILEINPUTSTREAM AND FILEOUTPUTSTREAM

Of the above classes to byte streams are FileInputStream and FileOutputStream probably the
most important as it is classes that can stream bytes from and to a file. I will show as an
example a method that encrypts the content of a file. The example is suitable to demonstrate
how to manipulate the content of a file, but the algorithm can not be used for practical
encryption of files, since it is easy to determine the key. The procedure is as follows:

A byte can have 256 different values and I starts with a byte array with 256 places and
initializes the array with the values 0–255 (below written in hexadecimal):

JAVA 5: FILES AND JAVA IO

40

JAVA.IO

After each byte is manipulated the arrray is encapsulated in a ByteArrayInputStream, and
the result is written back to the file.

The above example of using a ByteArrayOutputStream and a ByteArrayInputStream is not
typical and should only show the syntax. Later I will show examples, where these classes
are important.

FILEINPUTSTREAM AND FILEOUTPUTSTREAM

Of the above classes to byte streams are FileInputStream and FileOutputStream probably the
most important as it is classes that can stream bytes from and to a file. I will show as an
example a method that encrypts the content of a file. The example is suitable to demonstrate
how to manipulate the content of a file, but the algorithm can not be used for practical
encryption of files, since it is easy to determine the key. The procedure is as follows:

A byte can have 256 different values and I starts with a byte array with 256 places and
initializes the array with the values 0–255 (below written in hexadecimal):

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
....
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

Then I performes a permutation of the array (corresponding to a number of swaps of pair
of elements). The result could, for instance be:

00 01 32 03 04 05 38 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 30 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 5c 2d 2e 2f
1b 31 02 33 34 35 36 37 06 39 3a 3b 3c 3d 3e 3f
40 41 42 43 4e 45 46 47 48 49 4a 4b 4c 4d 44 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 2c 5d 5e 5f
....
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

The permuted array is then the encryption key. Consider the following integer:

0x021b2c30

Then I performes a permutation of the array (corresponding to a number of swaps of pair
of elements). The result could, for instance be:

JAVA 5: FILES AND JAVA IO

40

JAVA.IO

After each byte is manipulated the arrray is encapsulated in a ByteArrayInputStream, and
the result is written back to the file.

The above example of using a ByteArrayOutputStream and a ByteArrayInputStream is not
typical and should only show the syntax. Later I will show examples, where these classes
are important.

FILEINPUTSTREAM AND FILEOUTPUTSTREAM

Of the above classes to byte streams are FileInputStream and FileOutputStream probably the
most important as it is classes that can stream bytes from and to a file. I will show as an
example a method that encrypts the content of a file. The example is suitable to demonstrate
how to manipulate the content of a file, but the algorithm can not be used for practical
encryption of files, since it is easy to determine the key. The procedure is as follows:

A byte can have 256 different values and I starts with a byte array with 256 places and
initializes the array with the values 0–255 (below written in hexadecimal):

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
....
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

Then I performes a permutation of the array (corresponding to a number of swaps of pair
of elements). The result could, for instance be:

00 01 32 03 04 05 38 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 30 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 5c 2d 2e 2f
1b 31 02 33 34 35 36 37 06 39 3a 3b 3c 3d 3e 3f
40 41 42 43 4e 45 46 47 48 49 4a 4b 4c 4d 44 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 2c 5d 5e 5f
....
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

The permuted array is then the encryption key. Consider the following integer:

0x021b2c30

The permuted array is then the encryption key. Consider the following integer:

JAVA 5: FILES AND JAVA IO

40

JAVA.IO

After each byte is manipulated the arrray is encapsulated in a ByteArrayInputStream, and
the result is written back to the file.

The above example of using a ByteArrayOutputStream and a ByteArrayInputStream is not
typical and should only show the syntax. Later I will show examples, where these classes
are important.

FILEINPUTSTREAM AND FILEOUTPUTSTREAM

Of the above classes to byte streams are FileInputStream and FileOutputStream probably the
most important as it is classes that can stream bytes from and to a file. I will show as an
example a method that encrypts the content of a file. The example is suitable to demonstrate
how to manipulate the content of a file, but the algorithm can not be used for practical
encryption of files, since it is easy to determine the key. The procedure is as follows:

A byte can have 256 different values and I starts with a byte array with 256 places and
initializes the array with the values 0–255 (below written in hexadecimal):

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
....
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

Then I performes a permutation of the array (corresponding to a number of swaps of pair
of elements). The result could, for instance be:

00 01 32 03 04 05 38 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 30 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 5c 2d 2e 2f
1b 31 02 33 34 35 36 37 06 39 3a 3b 3c 3d 3e 3f
40 41 42 43 4e 45 46 47 48 49 4a 4b 4c 4d 44 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 2c 5d 5e 5f
....
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

The permuted array is then the encryption key. Consider the following integer:

0x021b2c30

JAVA 5: FILES AND JAVA IO

41

java.Io

that is the number 35335216. If we now must encrypt this number with the above key
the principle is that each byte is used as an index to the key and replaced with what the
key contains at that index:

JAVA 5: FILES AND JAVA IO

41

JAVA.IO

that is the number 35335216. If we now must encrypt this number with the above key
the principle is that each byte is used as an index to the key and replaced with what the
key contains at that index:

0x32305c1b

which is the number 842030107, that is a completely different number. It’s fine to be able
to encrypt data, but it is not much worth unless you can also decrypt the data. If you
has the key, it is simple. For each byte you can find its index in the key and the byte is
replaced with the index:

0x021b2c30

and you are back to the number that was originally encrypted.

Consider the following test method:

private static void test07()
{
 String path0 = "text0";
 String path1 = "text1";
 String path2 = "text2";
 FileOutputStream streamOut = null;
 try
 {
 streamOut = new FileOutputStream(path0);
 String navn = "ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ";
 byte[] bytes = navn.getBytes();
 streamOut.write(bytes);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (streamOut != null) try { streamOut.close(); } catch (Exception e) {}
 }
 printTekst(path0);
 int[] key = createKey();
 crypt(path0, path1, key);
 printTekst(path1);
 decrypt(path1, path2, key);
 printTekst(path2);
}

which is the number 842030107, that is a completely different number. It’s fine to be able
to encrypt data, but it is not much worth unless you can also decrypt the data. If you
has the key, it is simple. For each byte you can find its index in the key and the byte is
replaced with the index:

JAVA 5: FILES AND JAVA IO

41

JAVA.IO

that is the number 35335216. If we now must encrypt this number with the above key
the principle is that each byte is used as an index to the key and replaced with what the
key contains at that index:

0x32305c1b

which is the number 842030107, that is a completely different number. It’s fine to be able
to encrypt data, but it is not much worth unless you can also decrypt the data. If you
has the key, it is simple. For each byte you can find its index in the key and the byte is
replaced with the index:

0x021b2c30

and you are back to the number that was originally encrypted.

Consider the following test method:

private static void test07()
{
 String path0 = "text0";
 String path1 = "text1";
 String path2 = "text2";
 FileOutputStream streamOut = null;
 try
 {
 streamOut = new FileOutputStream(path0);
 String navn = "ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ";
 byte[] bytes = navn.getBytes();
 streamOut.write(bytes);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (streamOut != null) try { streamOut.close(); } catch (Exception e) {}
 }
 printTekst(path0);
 int[] key = createKey();
 crypt(path0, path1, key);
 printTekst(path1);
 decrypt(path1, path2, key);
 printTekst(path2);
}

and you are back to the number that was originally encrypted.

Consider the following test method:

JAVA 5: FILES AND JAVA IO

41

JAVA.IO

that is the number 35335216. If we now must encrypt this number with the above key
the principle is that each byte is used as an index to the key and replaced with what the
key contains at that index:

0x32305c1b

which is the number 842030107, that is a completely different number. It’s fine to be able
to encrypt data, but it is not much worth unless you can also decrypt the data. If you
has the key, it is simple. For each byte you can find its index in the key and the byte is
replaced with the index:

0x021b2c30

and you are back to the number that was originally encrypted.

Consider the following test method:

private static void test07()
{
 String path0 = "text0";
 String path1 = "text1";
 String path2 = "text2";
 FileOutputStream streamOut = null;
 try
 {
 streamOut = new FileOutputStream(path0);
 String navn = "ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ";
 byte[] bytes = navn.getBytes();
 streamOut.write(bytes);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (streamOut != null) try { streamOut.close(); } catch (Exception e) {}
 }
 printTekst(path0);
 int[] key = createKey();
 crypt(path0, path1, key);
 printTekst(path1);
 decrypt(path1, path2, key);
 printTekst(path2);
}

JAVA 5: FILES AND JAVA IO

42

java.Io

42

The first part of the method writes a string

JAVA 5: FILES AND JAVA IO

42

JAVA.IO

42

The first part of the method writes a string

String navn = "ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ";

to an FileOutputStream. You should note, how to create a FileOutputStream, converts the
string to a byte array and then write that array to the file. The file is called text0 and saved
in the current directory. If you examine the file, you will see that it takes up 31 bytes, which
is perhaps not what one would expect, but the reason is, that the String class’s getBytes()
method converts a string to a byte array using the default character encoding which is UTF8.
The string takes up 28 characters that except for the last three are encoded as a single byte,
while the last three each uses 2 bytes. Therefore the 25 + 6 = 31 bytes.

The program also has a method that reads the content of a stream (a file), interprets the
content as text and prints the text on the screen:

private static void printTekst(String path)
{
 FileInputStream stream = null;
 try
 {
 stream = new FileInputStream(path);

to an FileOutputStream. You should note, how to create a FileOutputStream, converts the
string to a byte array and then write that array to the file. The file is called text0 and saved
in the current directory. If you examine the file, you will see that it takes up 31 bytes, which
is perhaps not what one would expect, but the reason is, that the String class’s getBytes()
method converts a string to a byte array using the default character encoding which is UTF8.
The string takes up 28 characters that except for the last three are encoded as a single byte,
while the last three each uses 2 bytes. Therefore the 25 + 6 = 31 bytes.

The program also has a method that reads the content of a stream (a file), interprets the
content as text and prints the text on the screen:

JAVA 5: FILES AND JAVA IO

42

JAVA.IO

42

The first part of the method writes a string

String navn = "ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ";

to an FileOutputStream. You should note, how to create a FileOutputStream, converts the
string to a byte array and then write that array to the file. The file is called text0 and saved
in the current directory. If you examine the file, you will see that it takes up 31 bytes, which
is perhaps not what one would expect, but the reason is, that the String class’s getBytes()
method converts a string to a byte array using the default character encoding which is UTF8.
The string takes up 28 characters that except for the last three are encoded as a single byte,
while the last three each uses 2 bytes. Therefore the 25 + 6 = 31 bytes.

The program also has a method that reads the content of a stream (a file), interprets the
content as text and prints the text on the screen:

private static void printTekst(String path)
{
 FileInputStream stream = null;
 try
 {
 stream = new FileInputStream(path);

http://s.bookboon.com/GTca

JAVA 5: FILES AND JAVA IO

43

java.Io
JAVA 5: FILES AND JAVA IO

43

JAVA.IO

 ByteArrayOutputStream bytes = new ByteArrayOutputStream();
 for (int b = stream.read(); b != -1; b = stream.read()) bytes.write(b);
 System.out.println(new String(bytes.toByteArray()));
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (stream != null) try { stream.close(); } catch (Exception e) {}
 }
}

In this case, a FileInputStream is opened, and the file’s content are read to a ByteArrayOutputStream.
This stream is then converted to a string that is printed on the screen. The method is used
in the test method test07() to print the file’s content on the screen.

The rest of the test method then performs an encryption of the file’s text to the file text1
and prints the content of this file on the screen. The following method creates the key by
swapping random elements in the array key 1000 times:

private static int[] createKey()
{
 int[] key = new int[256];
 for (int i = 0; i < key.length; ++i) key[i] = i;
 Random rand = new Random();
 for (int n = 0; n < 1000; ++n)
 {
 int i = rand.nextInt(key.length);
 int j = rand.nextInt(key.length);
 if (i != j)
 {
 int t = key[i];
 key[i] = key[j];
 key[j] = t;
 }
 }
 return key;
}

In principle, it is possible to create 256! keys that are a vastly large number, so it is a
hopeless task to guess the key, but in return it is relatively easy to determine the key in
plain text analysis.

In this case, a FileInputStream is opened, and the file’s content are read to a ByteArrayOutputStream.
This stream is then converted to a string that is printed on the screen. The method is used
in the test method test07() to print the file’s content on the screen.

The rest of the test method then performs an encryption of the file’s text to the file text1
and prints the content of this file on the screen. The following method creates the key by
swapping random elements in the array key 1000 times:

JAVA 5: FILES AND JAVA IO

43

JAVA.IO

 ByteArrayOutputStream bytes = new ByteArrayOutputStream();
 for (int b = stream.read(); b != -1; b = stream.read()) bytes.write(b);
 System.out.println(new String(bytes.toByteArray()));
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (stream != null) try { stream.close(); } catch (Exception e) {}
 }
}

In this case, a FileInputStream is opened, and the file’s content are read to a ByteArrayOutputStream.
This stream is then converted to a string that is printed on the screen. The method is used
in the test method test07() to print the file’s content on the screen.

The rest of the test method then performs an encryption of the file’s text to the file text1
and prints the content of this file on the screen. The following method creates the key by
swapping random elements in the array key 1000 times:

private static int[] createKey()
{
 int[] key = new int[256];
 for (int i = 0; i < key.length; ++i) key[i] = i;
 Random rand = new Random();
 for (int n = 0; n < 1000; ++n)
 {
 int i = rand.nextInt(key.length);
 int j = rand.nextInt(key.length);
 if (i != j)
 {
 int t = key[i];
 key[i] = key[j];
 key[j] = t;
 }
 }
 return key;
}

In principle, it is possible to create 256! keys that are a vastly large number, so it is a
hopeless task to guess the key, but in return it is relatively easy to determine the key in
plain text analysis.

In principle, it is possible to create 256! keys that are a vastly large number, so it is a
hopeless task to guess the key, but in return it is relatively easy to determine the key in
plain text analysis.

JAVA 5: FILES AND JAVA IO

44

java.Io

The following class is used to encrypt a file:

JAVA 5: FILES AND JAVA IO

44

JAVA.IO

The following class is used to encrypt a file:

class InCrypter extends FilterOutputStream
{
 private int[] key;

 public InCrypter(OutputStream stream, int[] key)
 {
 super(stream);
 this.key = key;
 }

 public void write(int b) throws IOException
 {
 out.write(key[b]);
 }
}

The class inherits FilterOutputStream, a stream that filters (manipulates) the bytes sent to
the method write(), which collects the individual bytes in a buffer before being printed to
an OutputStream. In this case, the OutputStream is sent as a parameter to the constructor
together with the key, and the stream object is transferred to the base class. The write()
method is known by the name out.

With this class the file can be encrypted in the following way:

private static void crypt(String path1, String path2, int[] key)
{
 FileInputStream in = null;
 InCrypter inCrypter = null;
 try
 {
 in = new FileInputStream(path1);
 inCrypter = new InCrypter(new FileOutputStream(path2), key);
 for (int b = in.read(); b != -1; b = in.read()) inCrypter.write(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (in != null) try { in.close(); } catch (IOException e) {}
 if (inCrypter != null) try { inCrypter.close(); } catch (IOException e) {}
 }
}

The class inherits FilterOutputStream, a stream that filters (manipulates) the bytes sent to
the method write(), which collects the individual bytes in a buffer before being printed to
an OutputStream. In this case, the OutputStream is sent as a parameter to the constructor
together with the key, and the stream object is transferred to the base class. The write()
method is known by the name out.

With this class the file can be encrypted in the following way:

JAVA 5: FILES AND JAVA IO

44

JAVA.IO

The following class is used to encrypt a file:

class InCrypter extends FilterOutputStream
{
 private int[] key;

 public InCrypter(OutputStream stream, int[] key)
 {
 super(stream);
 this.key = key;
 }

 public void write(int b) throws IOException
 {
 out.write(key[b]);
 }
}

The class inherits FilterOutputStream, a stream that filters (manipulates) the bytes sent to
the method write(), which collects the individual bytes in a buffer before being printed to
an OutputStream. In this case, the OutputStream is sent as a parameter to the constructor
together with the key, and the stream object is transferred to the base class. The write()
method is known by the name out.

With this class the file can be encrypted in the following way:

private static void crypt(String path1, String path2, int[] key)
{
 FileInputStream in = null;
 InCrypter inCrypter = null;
 try
 {
 in = new FileInputStream(path1);
 inCrypter = new InCrypter(new FileOutputStream(path2), key);
 for (int b = in.read(); b != -1; b = in.read()) inCrypter.write(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (in != null) try { in.close(); } catch (IOException e) {}
 if (inCrypter != null) try { inCrypter.close(); } catch (IOException e) {}
 }
}

JAVA 5: FILES AND JAVA IO

45

java.Io

45

path1 is the name of the file to be encrypted, and it is opened as a FileInputStream. path2 is
the name of the file, that must contain the encrypted data and opens as a FileOutputStream
used as a paramterer to an InCrypter object. After this happens the encryption by reading
the input file and writes it to the output file using the FilterOutputStream object. You should
note that when this stream is closed in the finally block, also the OutputStream is closed so
the content is written physically to the file.

Decryption of the file takes place in principle in the same way. I first defines a FilterInputStream
as a filter for an InputStream:

JAVA 5: FILES AND JAVA IO

45

JAVA.IO

45

path1 is the name of the file to be encrypted, and it is opened as a FileInputStream. path2 is
the name of the file, that must contain the encrypted data and opens as a FileOutputStream
used as a paramterer to an InCrypter object. After this happens the encryption by reading
the input file and writes it to the output file using the FilterOutputStream object. You should
note that when this stream is closed in the finally block, also the OutputStream is closed so
the content is written physically to the file.

Decryption of the file takes place in principle in the same way. I first defines a FilterInputStream
as a filter for an InputStream:

class DeCrypter extends FilterInputStream
{
 private int[] key;

 public DeCrypter(InputStream stream, int[] key)
 {
 super(stream);
 int[] map = new int[256];
 for (int i = 0; i < map.length; ++i) map[key[i]] = i;
 this.key = map;
 }

 .

http://s.bookboon.com/AlcatelLucent

JAVA 5: FILES AND JAVA IO

46

java.Io
JAVA 5: FILES AND JAVA IO

46

JAVA.IO

 public int read() throws IOException
 {
 int value = in.read();
 return (value == -1) ? -1 : key[value];
 }
}

The constructor has this time an InputStream as a parameter, but also the constructor inverts
the key to make it easier to decrypt the file. The method read() reads the next byte in the
input stream and is it a byte (and not EOF), the method returns the inverted key. The
following method can be used to decrypt an encrypted file:

private static void decrypt(String path1, String path2, int[] key)
{
 DeCrypter deCrypter = null;
 FileOutputStream out = null;
 try
 {
 deCrypter = new DeCrypter(new FileInputStream(path1), key);
 out = new FileOutputStream(path2);
 for (int b = deCrypter.read(); b != -1; b = deCrypter.read()) out.write(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (deCrypter != null) try { deCrypter.close(); } catch (IOException e) {}
 if (out != null) try { out.close(); } catch (IOException e) {}
 }
}

Here path1 is the name of the file to be decrypted, and path2 is the name of the decrypted
file. The method works in principle in the the same manner as the method crypt(), only
with the difference that it use a FilterInputStream.

If you run the program, you get the following result:

32

If you run the program, you get the following result:

ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ
##���#��#���H#[3�-���F��~z~g~�
ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ

If you examines the three files using Files and you should note that all three files have the same size
(31 bytes).

Exercise 2

Write a program named Copy that should be performed as a command and works in much the same
way as the command cp in Linux, where the command line specifies the file - source - to be copied,
and the name of the file - destination - as it should be copied to. The source file must be an
InputStream and the destination must be an OutputStream.

When the program is finished, you must test it, and preferably with files of different types, such as a
document and a picture.

Data stream's

Byte streams are the basic streams, and in principle, all streams are byte streams, but there are other
classes that make it easy to stream other primitive types to a file. It is a DataOutputStream which is
derived from FilterOutputStream and DataInputStream that is derived from the FilterInputStream. I
will also mention a BufferedOutputStream and a BufferedInputStream, which also are derived from the
classes FilterOutputStream and FilterInputStream. In general, the data streams works as an
OutputStream and an InputStream in the sense that they calls the operating system for each byte to be
written and for each byte to be reading. It is not particularly effective and, therefore the classes
BufferedOutputStream and BufferedInputStream, that assign buffers to an OutputStream and an
InputStream.

Consider the following test method:

private static void test08()
{
 try (DataOutputStream stream =
 new DataOutputStream(new BufferedOutputStream(new FileOutputStream("data"))))
 {
 stream.writeInt(123);
 stream.writeDouble(Math.PI);
 stream.writeUTF("Åge Sørensen");
 stream.writeLong(Long.MAX_VALUE);
 }
 catch (IOException ex)
 {
 System.out.println(ex);

If you examines the three files using Files and you should note that all three files have the
same size (31 bytes).

The constructor has this time an InputStream as a parameter, but also the constructor inverts
the key to make it easier to decrypt the file. The method read() reads the next byte in the
input stream and is it a byte (and not EOF), the method returns the inverted key. The
following method can be used to decrypt an encrypted file:

JAVA 5: FILES AND JAVA IO

46

JAVA.IO

 public int read() throws IOException
 {
 int value = in.read();
 return (value == -1) ? -1 : key[value];
 }
}

The constructor has this time an InputStream as a parameter, but also the constructor inverts
the key to make it easier to decrypt the file. The method read() reads the next byte in the
input stream and is it a byte (and not EOF), the method returns the inverted key. The
following method can be used to decrypt an encrypted file:

private static void decrypt(String path1, String path2, int[] key)
{
 DeCrypter deCrypter = null;
 FileOutputStream out = null;
 try
 {
 deCrypter = new DeCrypter(new FileInputStream(path1), key);
 out = new FileOutputStream(path2);
 for (int b = deCrypter.read(); b != -1; b = deCrypter.read()) out.write(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 finally
 {
 if (deCrypter != null) try { deCrypter.close(); } catch (IOException e) {}
 if (out != null) try { out.close(); } catch (IOException e) {}
 }
}

Here path1 is the name of the file to be decrypted, and path2 is the name of the decrypted
file. The method works in principle in the the same manner as the method crypt(), only
with the difference that it use a FilterInputStream.

If you run the program, you get the following result:

32

If you run the program, you get the following result:

ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ
##���#��#���H#[3�-���F��~z~g~�
ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ

If you examines the three files using Files and you should note that all three files have the same size
(31 bytes).

Exercise 2

Write a program named Copy that should be performed as a command and works in much the same
way as the command cp in Linux, where the command line specifies the file - source - to be copied,
and the name of the file - destination - as it should be copied to. The source file must be an
InputStream and the destination must be an OutputStream.

When the program is finished, you must test it, and preferably with files of different types, such as a
document and a picture.

Data stream's

Byte streams are the basic streams, and in principle, all streams are byte streams, but there are other
classes that make it easy to stream other primitive types to a file. It is a DataOutputStream which is
derived from FilterOutputStream and DataInputStream that is derived from the FilterInputStream. I
will also mention a BufferedOutputStream and a BufferedInputStream, which also are derived from the
classes FilterOutputStream and FilterInputStream. In general, the data streams works as an
OutputStream and an InputStream in the sense that they calls the operating system for each byte to be
written and for each byte to be reading. It is not particularly effective and, therefore the classes
BufferedOutputStream and BufferedInputStream, that assign buffers to an OutputStream and an
InputStream.

Consider the following test method:

private static void test08()
{
 try (DataOutputStream stream =
 new DataOutputStream(new BufferedOutputStream(new FileOutputStream("data"))))
 {
 stream.writeInt(123);
 stream.writeDouble(Math.PI);
 stream.writeUTF("Åge Sørensen");
 stream.writeLong(Long.MAX_VALUE);
 }
 catch (IOException ex)
 {
 System.out.println(ex);

If you examines the three files using Files and you should note that all three files have the
same size (31 bytes).

Here path1 is the name of the file to be decrypted, and path2 is the name of the decrypted
file. The method works in principle in the the same manner as the method crypt(), only
with the difference that it use a FilterInputStream.

If you run the program, you get the following result:

32

If you run the program, you get the following result:

ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ
##���#��#���H#[3�-���F��~z~g~�
ABCDEFGHIJKLMNOPQRSTUVXYZÆØÅ

If you examines the three files using Files and you should note that all three files have the same size
(31 bytes).

Exercise 2

Write a program named Copy that should be performed as a command and works in much the same
way as the command cp in Linux, where the command line specifies the file - source - to be copied,
and the name of the file - destination - as it should be copied to. The source file must be an
InputStream and the destination must be an OutputStream.

When the program is finished, you must test it, and preferably with files of different types, such as a
document and a picture.

Data stream's

Byte streams are the basic streams, and in principle, all streams are byte streams, but there are other
classes that make it easy to stream other primitive types to a file. It is a DataOutputStream which is
derived from FilterOutputStream and DataInputStream that is derived from the FilterInputStream. I
will also mention a BufferedOutputStream and a BufferedInputStream, which also are derived from the
classes FilterOutputStream and FilterInputStream. In general, the data streams works as an
OutputStream and an InputStream in the sense that they calls the operating system for each byte to be
written and for each byte to be reading. It is not particularly effective and, therefore the classes
BufferedOutputStream and BufferedInputStream, that assign buffers to an OutputStream and an
InputStream.

Consider the following test method:

private static void test08()
{
 try (DataOutputStream stream =
 new DataOutputStream(new BufferedOutputStream(new FileOutputStream("data"))))
 {
 stream.writeInt(123);
 stream.writeDouble(Math.PI);
 stream.writeUTF("Åge Sørensen");
 stream.writeLong(Long.MAX_VALUE);
 }
 catch (IOException ex)
 {
 System.out.println(ex);

If you examines the three files using Files and you should note that all three files have the
same size (31 bytes).

JAVA 5: FILES AND JAVA IO

47

java.Io

EXERCISE 2

Write a program named Copy that should be performed as a command and works in much
the same way as the command cp in Linux, where the command line specifies the file –
source – to be copied, and the name of the file – destination – as it should be copied to.
The source file must be an InputStream and the destination must be an OutputStream.

When the program is finished, you must test it, and preferably with files of different types,
such as a document and a picture.

DATA STREAM’S

Byte streams are the basic streams, and in principle, all streams are byte streams, but there are
other classes that make it easy to stream other primitive types to a file. It is a DataOutputStream
which is derived from FilterOutputStream and DataInputStream that is derived from the
FilterInputStream. I will also mention a BufferedOutputStream and a BufferedInputStream,
which also are derived from the classes FilterOutputStream and FilterInputStream. In general,
the data streams works as an OutputStream and an InputStream in the sense that they calls
the operating system for each byte to be written and for each byte to be reading. It is not
particularly effective and, therefore the classes BufferedOutputStream and BufferedInputStream,
that assign buffers to an OutputStream and an InputStream.

Consider the following test method:

JAVA 5: FILES AND JAVA IO

47

JAVA.IO

EXERCISE 2

Write a program named Copy that should be performed as a command and works in much
the same way as the command cp in Linux, where the command line specifies the file –
source – to be copied, and the name of the file – destination – as it should be copied to.
The source file must be an InputStream and the destination must be an OutputStream.

When the program is finished, you must test it, and preferably with files of different types,
such as a document and a picture.

DATA STREAM’S

Byte streams are the basic streams, and in principle, all streams are byte streams, but there are
other classes that make it easy to stream other primitive types to a file. It is a DataOutputStream
which is derived from FilterOutputStream and DataInputStream that is derived from the
FilterInputStream. I will also mention a BufferedOutputStream and a BufferedInputStream,
which also are derived from the classes FilterOutputStream and FilterInputStream. In general,
the data streams works as an OutputStream and an InputStream in the sense that they calls
the operating system for each byte to be written and for each byte to be reading. It is not
particularly effective and, therefore the classes BufferedOutputStream and BufferedInputStream,
that assign buffers to an OutputStream and an InputStream.

Consider the following test method:

private static void test08()
{
 try (DataOutputStream stream =
 new DataOutputStream(new BufferedOutputStream(new FileOutputStream("data"))))
 {
 stream.writeInt(123);
 stream.writeDouble(Math.PI);
 stream.writeUTF("Åge Sørensen");
 stream.writeLong(Long.MAX_VALUE);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (DataInputStream stream =
 new DataInputStream(new BufferedInputStream(new FileInputStream("data"))))
 {
 System.out.println(stream.readInt());
 System.out.println(stream.readDouble());
 System.out.println(stream.readUTF());

JAVA 5: FILES AND JAVA IO

48

java.Io

48

JAVA 5: FILES AND JAVA IO

48

JAVA.IO

48

 System.out.println(stream.readLong());
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

First the method opens a FileOutputStream called data. It is then encapsulated in a
BufferedOutputStream, which in turn is encapsulated in a DataOutputStream. Then the
method writes an int, a double, a String and a long to the file. You should note that a
DataOutputStream has write methods for all the primitive types and also the type String.
Here, the method writeInt() write 4 bytes to the file, while the method writeDouble() writes
8 bytes. The method writeUTF() writes a string converted with an UTF8 encoding. The
string fills in this case, 12 characters, and because of the characters Å and ø it will therefore
be encoded as 14 bytes, and the method should therefore write

4 + 8 + 14 + 8 = 34 bytes

First the method opens a FileOutputStream called data. It is then encapsulated in a
BufferedOutputStream, which in turn is encapsulated in a DataOutputStream. Then the
method writes an int, a double, a String and a long to the file. You should note that a
DataOutputStream has write methods for all the primitive types and also the type String.
Here, the method writeInt() write 4 bytes to the file, while the method writeDouble() writes
8 bytes. The method writeUTF() writes a string converted with an UTF8 encoding. The
string fills in this case, 12 characters, and because of the characters Å and ø it will therefore
be encoded as 14 bytes, and the method should therefore write

4 + 8 + 14 + 8 = 34 bytes

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 5: FILES AND JAVA IO

49

java.Io

to the file. If you examine the file, you will find that it takes up 36 bytes. The reason is
that the method writeUTF() adds two additional bytes (the first two bytes), which indicates
the number of bytes written to the file (the length of the string). It is necessary to read
the string again.

The last part of the test method reads the content of the file again, and here you must note
that a DataInputStream has read-methods for all the primitive data types. For example the
method readDouble() that reads the next eight bytes from the location where the file pointer
is and convert the bytes to a double. Similarly, readUTF() to reads the first two bytes, and
from these determines how many bytes to be read.

EXERCISE 3

You must write a program that has a method that prints 1000000 random numbers of
the type double to a file. The numbers should be written using a DataOutputStream, but
without using a BufferedOutputStream. When the method writes data to the file, it must
at the same time determines the sum of the numbers and print the value on the screen.

The program must also have a method that reads the numbers in the above file and
determines their sum. The numbers must be read using a DataInputStream, but without
using a BufferedInputStream. Finally, the method must print the sum on the screen and it
would like to be the same number as in the first method.

Finally, try to change the above methods, so the first uses a BufferedOutputStream and the
other uses a BufferedInputStream. Try to observe an increased efficiency. If not, try to increase
the number of numbers to 10000000.

EXERCISE 4

You have to write the same program as in exercise 2, but this time you must encapsulate
the two streams respectively in a BufferedOutputStream and a BufferedInputStream.

Can you observe an improvement?

JAVA 5: FILES AND JAVA IO

50

java.Io

2.4 OBJECT SERIALIZATION

In the examples in the previous books I have used serialization of objects as an easy way
to store data in a file. I will now take a closer look at how it works. In principle it is a
matter of stream an object’s bytes to a ByteStream, but it is not necessarily simple. If you
consider a DataStream, it is simple because for the primitive types, you know how much a
datalement fills, and then exactly how many bytes to be written or read. This is expressed
by the classes DataOutputStream and DataInputStream that has specific methods for each of
the primitive data types. When you look at a String (which is an object) it is necessary with
a little more since it is necessary also to save, how many bytes the string fills. It is necessary
to read the string again. The situation is even more complex if there is any object, since
one does not know what such an object fills, and when it may be composed of primitive
types and objects that in turn can consist of primitive types and objects, and it may repeat
at an arbitrary depth.

In order to load an object from a file, it is necessary, together with the object’s data to store
information about the object’s structure, and as an object, in principle, is a hierarchical
structure there must be stored information about the entire structure, such that the object
can be restored when it is deserialized. It is not free, to serialize and deserialize objects
and is not necessarily effective and is done using a technique called reflection, which are
explained in a recent book. For this reason, Java supports three types of serialization, which
is illustrated in the following examples.

In order that an object can be serialized, it must implement the interface Serializable. It is a
simple interface without fields or methods. If you try to serialize an object whose class is not
Serializable you get an Exception. As an example is shown a class that is defined Serializable:

JAVA 5: FILES AND JAVA IO

50

JAVA.IO

2.4 OBJECT SERIALIZATION

In the examples in the previous books I have used serialization of objects as an easy way
to store data in a file. I will now take a closer look at how it works. In principle it is a
matter of stream an object’s bytes to a ByteStream, but it is not necessarily simple. If you
consider a DataStream, it is simple because for the primitive types, you know how much a
datalement fills, and then exactly how many bytes to be written or read. This is expressed
by the classes DataOutputStream and DataInputStream that has specific methods for each of
the primitive data types. When you look at a String (which is an object) it is necessary with
a little more since it is necessary also to save, how many bytes the string fills. It is necessary
to read the string again. The situation is even more complex if there is any object, since
one does not know what such an object fills, and when it may be composed of primitive
types and objects that in turn can consist of primitive types and objects, and it may repeat
at an arbitrary depth.

In order to load an object from a file, it is necessary, together with the object’s data to store
information about the object’s structure, and as an object, in principle, is a hierarchical
structure there must be stored information about the entire structure, such that the object
can be restored when it is deserialized. It is not free, to serialize and deserialize objects
and is not necessarily effective and is done using a technique called reflection, which are
explained in a recent book. For this reason, Java supports three types of serialization, which
is illustrated in the following examples.

In order that an object can be serialized, it must implement the interface Serializable. It is a
simple interface without fields or methods. If you try to serialize an object whose class is not
Serializable you get an Exception. As an example is shown a class that is defined Serializable:

class Person implements Serializable
{
 private String name;
 private Calendar fdate;
 private double sats;
 private transient int hours = 0;

 public Person(String name, Calendar fdate, double sats)
 {
 this.name = name;
 this.fdate = fdate;
 this.sats = sats;
 }

JAVA 5: FILES AND JAVA IO

51

java.Io

51

JAVA 5: FILES AND JAVA IO

51

JAVA.IO

51

 public String getName()
 {
 return name;
 }

 public int getAge()
 {
 Calendar dato = Calendar.getInstance();
 int age = dato.get(Calendar.YEAR) – fdate.get(Calendar.YEAR);
 if ((dato.get(Calendar.MONTH) + 1) * 100 + dato.get(Calendar.DATE) >=
 (fdate.get(Calendar.MONTH) + 1) * 100 + fdate.get(Calendar.DATE)) ++age;
 return age;
 }

 public double getPay()
 {
 return hours * sats;
 }

 public void add(int hours)
 {
 this.hours += hours;
 }

http://s.bookboon.com/BI

JAVA 5: FILES AND JAVA IO

52

java.Io
JAVA 5: FILES AND JAVA IO

52

JAVA.IO

 public String toString()
 {
 return name + String.format(", %d years", getAge());
 }
}

The class has four instance variables. It can be serialized as the first variable has the type
String, which is Serializable, the other is of the type Calendar (and must represent a person’s
date of birth) is also Serializable, while the third is a double (and all variables of a primitive
types can immediately be serialized). The variable will represent an hourly rate. The last
variable represents the number of hours, and it is defined transient. Such a variable is not
serialized, and the meaning is that you then can specify that variables or objects of any
reason not should be serialized.

The following method creates a Person object, assigns the person 20 hours, and then
prints the object. Next, the object is serialized to a file. An object is serialized with an
ObjectOutputStream (which as parameter has an OutputStream) and the method writeObject():

private static void test09()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("person")))
 {
 Person pers =
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225);
 pers.add(20);
 print(pers);
 stream.writeObject(pers);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("person")))
 {
 Person pers = (Person)stream.readObject();
 print(pers);
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }

The class has four instance variables. It can be serialized as the first variable has the type
String, which is Serializable, the other is of the type Calendar (and must represent a person’s
date of birth) is also Serializable, while the third is a double (and all variables of a primitive
types can immediately be serialized). The variable will represent an hourly rate. The last
variable represents the number of hours, and it is defined transient. Such a variable is not
serialized, and the meaning is that you then can specify that variables or objects of any
reason not should be serialized.

The following method creates a Person object, assigns the person 20 hours, and then
prints the object. Next, the object is serialized to a file. An object is serialized with an
ObjectOutputStream (which as parameter has an OutputStream) and the method writeObject():

JAVA 5: FILES AND JAVA IO

52

JAVA.IO

 public String toString()
 {
 return name + String.format(", %d years", getAge());
 }
}

The class has four instance variables. It can be serialized as the first variable has the type
String, which is Serializable, the other is of the type Calendar (and must represent a person’s
date of birth) is also Serializable, while the third is a double (and all variables of a primitive
types can immediately be serialized). The variable will represent an hourly rate. The last
variable represents the number of hours, and it is defined transient. Such a variable is not
serialized, and the meaning is that you then can specify that variables or objects of any
reason not should be serialized.

The following method creates a Person object, assigns the person 20 hours, and then
prints the object. Next, the object is serialized to a file. An object is serialized with an
ObjectOutputStream (which as parameter has an OutputStream) and the method writeObject():

private static void test09()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("person")))
 {
 Person pers =
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225);
 pers.add(20);
 print(pers);
 stream.writeObject(pers);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("person")))
 {
 Person pers = (Person)stream.readObject();
 print(pers);
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }

JAVA 5: FILES AND JAVA IO

53

java.Io
JAVA 5: FILES AND JAVA IO

53

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

After the object is serialized it is deserialized again with an ObjectInputStream, after which it
is printed on the screen. The object is read with readObject(), and you should note the need
for a typecast. If it not is possible, you get a ClassNotFoundException. The print() method is:

private static void print(Person pers)
{
 System.out.println(pers);
 System.out.println("Pay: " + pers.getPay());
}

and if the test method is performed, you get the result:

Carlo Jensen, 68 years
Pay: 4500.0
Carlo Jensen, 68 years
Pay: 0.0

You should note that the value of the variable hours is not serialized.

SERIALIZES MULTIPLE OBJECTS

The following method also serialize Person objects (three objects), and should show that it
is possible to serialize multiple objects in the same file:

private static void test10()
{
 Person[] pers = {
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225),
 new Person("Gudrun Andersen", new GregorianCalendar(1963, 10, 3), 325),
 new Person("Abelone Sørensen", new GregorianCalendar(1972, 3, 13), 375) };
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("personer")))
 {
 for (Person p : pers) stream.writeObject(p);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }

After the object is serialized it is deserialized again with an ObjectInputStream, after which it
is printed on the screen. The object is read with readObject(), and you should note the need
for a typecast. If it not is possible, you get a ClassNotFoundException. The print() method is:

JAVA 5: FILES AND JAVA IO

53

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

After the object is serialized it is deserialized again with an ObjectInputStream, after which it
is printed on the screen. The object is read with readObject(), and you should note the need
for a typecast. If it not is possible, you get a ClassNotFoundException. The print() method is:

private static void print(Person pers)
{
 System.out.println(pers);
 System.out.println("Pay: " + pers.getPay());
}

and if the test method is performed, you get the result:

Carlo Jensen, 68 years
Pay: 4500.0
Carlo Jensen, 68 years
Pay: 0.0

You should note that the value of the variable hours is not serialized.

SERIALIZES MULTIPLE OBJECTS

The following method also serialize Person objects (three objects), and should show that it
is possible to serialize multiple objects in the same file:

private static void test10()
{
 Person[] pers = {
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225),
 new Person("Gudrun Andersen", new GregorianCalendar(1963, 10, 3), 325),
 new Person("Abelone Sørensen", new GregorianCalendar(1972, 3, 13), 375) };
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("personer")))
 {
 for (Person p : pers) stream.writeObject(p);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }

and if the test method is performed, you get the result:

JAVA 5: FILES AND JAVA IO

53

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

After the object is serialized it is deserialized again with an ObjectInputStream, after which it
is printed on the screen. The object is read with readObject(), and you should note the need
for a typecast. If it not is possible, you get a ClassNotFoundException. The print() method is:

private static void print(Person pers)
{
 System.out.println(pers);
 System.out.println("Pay: " + pers.getPay());
}

and if the test method is performed, you get the result:

Carlo Jensen, 68 years
Pay: 4500.0
Carlo Jensen, 68 years
Pay: 0.0

You should note that the value of the variable hours is not serialized.

SERIALIZES MULTIPLE OBJECTS

The following method also serialize Person objects (three objects), and should show that it
is possible to serialize multiple objects in the same file:

private static void test10()
{
 Person[] pers = {
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225),
 new Person("Gudrun Andersen", new GregorianCalendar(1963, 10, 3), 325),
 new Person("Abelone Sørensen", new GregorianCalendar(1972, 3, 13), 375) };
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("personer")))
 {
 for (Person p : pers) stream.writeObject(p);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }

You should note that the value of the variable hours is not serialized.

SERIALIZES MULTIPLE OBJECTS

The following method also serialize Person objects (three objects), and should show that it
is possible to serialize multiple objects in the same file:

JAVA 5: FILES AND JAVA IO

53

JAVA.IO

 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

After the object is serialized it is deserialized again with an ObjectInputStream, after which it
is printed on the screen. The object is read with readObject(), and you should note the need
for a typecast. If it not is possible, you get a ClassNotFoundException. The print() method is:

private static void print(Person pers)
{
 System.out.println(pers);
 System.out.println("Pay: " + pers.getPay());
}

and if the test method is performed, you get the result:

Carlo Jensen, 68 years
Pay: 4500.0
Carlo Jensen, 68 years
Pay: 0.0

You should note that the value of the variable hours is not serialized.

SERIALIZES MULTIPLE OBJECTS

The following method also serialize Person objects (three objects), and should show that it
is possible to serialize multiple objects in the same file:

private static void test10()
{
 Person[] pers = {
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225),
 new Person("Gudrun Andersen", new GregorianCalendar(1963, 10, 3), 325),
 new Person("Abelone Sørensen", new GregorianCalendar(1972, 3, 13), 375) };
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("personer")))
 {
 for (Person p : pers) stream.writeObject(p);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }

JAVA 5: FILES AND JAVA IO

54

java.Io

54

JAVA 5: FILES AND JAVA IO

54

JAVA.IO

54

 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("personer")))
 {
 for (;;)
 {
 Person p = (Person)stream.readObject();
 System.out.println(p);
 }
 }
 catch (EOFException ex)
 {
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 5: FILES AND JAVA IO

55

java.Io

However, it is rare that you do that. If you have multiple objects and as here an array of
objects (or an ArrayList of objects), you will usually serialize it all but as a single operation:

JAVA 5: FILES AND JAVA IO

55

JAVA.IO

However, it is rare that you do that. If you have multiple objects and as here an array of
objects (or an ArrayList of objects), you will usually serialize it all but as a single operation:

private static void test11()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("personer")))
 {
 Person[] pers = {
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225),
 new Person("Gudrun Andersen", new GregorianCalendar(1963, 10, 3), 325),
 new Person("Abelone Sørensen", new GregorianCalendar(1972, 3, 13), 375) };
 stream.writeObject(pers);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("personer")))
 {
 Person[] pers = (Person[])stream.readObject();
 for (Person p : pers) System.out.println(p);
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

It is possible, as the class Array is Serializable. The same applies to the collection classes,
and therefore they can also be serialized.

SERIALIZES AN OBJECT HIERARCHY

The following class inherits Person and expands the class Person with a job title

class Employee extends Person
{
 private String job;

It is possible, as the class Array is Serializable. The same applies to the collection classes,
and therefore they can also be serialized.

SERIALIZES AN OBJECT HIERARCHY

The following class inherits Person and expands the class Person with a job title

JAVA 5: FILES AND JAVA IO

55

JAVA.IO

However, it is rare that you do that. If you have multiple objects and as here an array of
objects (or an ArrayList of objects), you will usually serialize it all but as a single operation:

private static void test11()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("personer")))
 {
 Person[] pers = {
 new Person("Carlo Jensen", new GregorianCalendar(1949, 0, 23), 225),
 new Person("Gudrun Andersen", new GregorianCalendar(1963, 10, 3), 325),
 new Person("Abelone Sørensen", new GregorianCalendar(1972, 3, 13), 375) };
 stream.writeObject(pers);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("personer")))
 {
 Person[] pers = (Person[])stream.readObject();
 for (Person p : pers) System.out.println(p);
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

It is possible, as the class Array is Serializable. The same applies to the collection classes,
and therefore they can also be serialized.

SERIALIZES AN OBJECT HIERARCHY

The following class inherits Person and expands the class Person with a job title

class Employee extends Person
{
 private String job;

JAVA 5: FILES AND JAVA IO

56

java.Io
JAVA 5: FILES AND JAVA IO

56

JAVA.IO

 public Employee(String name, String job, Calendar fdate, double sats)
 {
 super(name, fdate, sats);
 this.job = job;
 }

 public String toString()
 {
 return job + "\n" + super.toString();
 }
}

You should note that the class is not defined Serializable, but objects of this type can still
be serialized because the base class is Serializable:

private static void test12()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("employee")))
 {
 Employee e = new Employee("Carlo Jensen", "Executioner",
 new GregorianCalendar(1949, 0, 23), 225);
 stream.writeObject(e);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("employee")))
 {
 Employee e = (Employee)stream.readObject();
 System.out.println(e);
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

That is, it works because an Employee is Serializable as it inherits a Serializable class.

You should note that the class is not defined Serializable, but objects of this type can still
be serialized because the base class is Serializable:

JAVA 5: FILES AND JAVA IO

56

JAVA.IO

 public Employee(String name, String job, Calendar fdate, double sats)
 {
 super(name, fdate, sats);
 this.job = job;
 }

 public String toString()
 {
 return job + "\n" + super.toString();
 }
}

You should note that the class is not defined Serializable, but objects of this type can still
be serialized because the base class is Serializable:

private static void test12()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("employee")))
 {
 Employee e = new Employee("Carlo Jensen", "Executioner",
 new GregorianCalendar(1949, 0, 23), 225);
 stream.writeObject(e);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("employee")))
 {
 Employee e = (Employee)stream.readObject();
 System.out.println(e);
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

That is, it works because an Employee is Serializable as it inherits a Serializable class.That is, it works because an Employee is Serializable as it inherits a Serializable class.

JAVA 5: FILES AND JAVA IO

57

java.Io

57

USER DEFINED WRITEOBJECT() AND READOBJECT()

Sometimes you want to determine by yourself how the objects must be serialized and
deserialized and depart from the default operations. A typical reason could be performance,
but there could also be other reasons. The process is quite simple, since the class it is desired
to serialize as usual must be defined Serializable and in addition implements the methods
writeObject() and the readObject(). Then these methods are used instead of the default
methods in ObjectOutputStream and ObjectInputStream. The following class implements
these methods:

JAVA 5: FILES AND JAVA IO

57

JAVA.IO

57

USER DEFINED WRITEOBJECT() AND READOBJECT()

Sometimes you want to determine by yourself how the objects must be serialized and
deserialized and depart from the default operations. A typical reason could be performance,
but there could also be other reasons. The process is quite simple, since the class it is desired
to serialize as usual must be defined Serializable and in addition implements the methods
writeObject() and the readObject(). Then these methods are used instead of the default
methods in ObjectOutputStream and ObjectInputStream. The following class implements
these methods:

class Name implements Serializable
{
 private String name;
 private Calendar time = null;

 public Name(String name)
 {
 this.name = name;
 }

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 5: FILES AND JAVA IO

58

java.Io
JAVA 5: FILES AND JAVA IO

58

JAVA.IO

 private void writeObject(ObjectOutputStream out) throws IOException
 {
 out.writeUTF(name);
 }

 private void readObject(ObjectInputStream in)
 throws ClassNotFoundException, IOException
 {
 name = in.readUTF();
 time = Calendar.getInstance();
 }
 public String toString()
 {
 return name + "\n" + (time == null ? "Not desirialized" : getTime());
 }

 private String getTime()
 {
 return
 String.format("%02d-%02d-%04d %02d:%02d:%02d:%03d", time.get(Calendar.DATE),
 time.get(Calendar.MONTH) + 1, time.get(Calendar.YEAR),
 time.get(Calendar.HOUR_OF_DAY), time.get(Calendar.MINUTE),
 time.get(Calendar.SECOND), time.get(Calendar.MILLISECOND));
 }
}

When an object is serialized, only the field name will be saved while the date first is created
when the object is deserialized and thus shows when the object is deserialized:

private static void test13()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("name")))
 {
 Name name = new Name("Carlo Jensen");
 stream.writeObject(name);
 System.out.println(name);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("name")))
 {
 Name name = (Name)stream.readObject();
 System.out.println(name);
 }

When an object is serialized, only the field name will be saved while the date first is created
when the object is deserialized and thus shows when the object is deserialized:

JAVA 5: FILES AND JAVA IO

58

JAVA.IO

 private void writeObject(ObjectOutputStream out) throws IOException
 {
 out.writeUTF(name);
 }

 private void readObject(ObjectInputStream in)
 throws ClassNotFoundException, IOException
 {
 name = in.readUTF();
 time = Calendar.getInstance();
 }
 public String toString()
 {
 return name + "\n" + (time == null ? "Not desirialized" : getTime());
 }

 private String getTime()
 {
 return
 String.format("%02d-%02d-%04d %02d:%02d:%02d:%03d", time.get(Calendar.DATE),
 time.get(Calendar.MONTH) + 1, time.get(Calendar.YEAR),
 time.get(Calendar.HOUR_OF_DAY), time.get(Calendar.MINUTE),
 time.get(Calendar.SECOND), time.get(Calendar.MILLISECOND));
 }
}

When an object is serialized, only the field name will be saved while the date first is created
when the object is deserialized and thus shows when the object is deserialized:

private static void test13()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("name")))
 {
 Name name = new Name("Carlo Jensen");
 stream.writeObject(name);
 System.out.println(name);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("name")))
 {
 Name name = (Name)stream.readObject();
 System.out.println(name);
 }

JAVA 5: FILES AND JAVA IO

59

java.Io
JAVA 5: FILES AND JAVA IO

59

JAVA.IO

 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

Carlo Jensen
Not desirialized
Carlo Jensen
26-12-2016 12:14:51:792

You should note that the serialization and deserialization syntactically happens in exactly
the same way. It’s just some other methods that are performed.

EXTERNALIZABLE

It is also possible completely self to address how the objects should be serialized and
deserialized, and again could performance be a reason. The class that should be serialized
must instead of Serializable implement the interface Externalizable, which defines two
methods writeExternal() and readExternal():

class King implements Externalizable
{
 private String name;
 private int from;
 private int to;

 public King()
 {
 }

 public King(String name, int from, int to)
 {
 this.name = name;
 this.from = from;
 this.to = to;
 }

You should note that the serialization and deserialization syntactically happens in exactly
the same way. It’s just some other methods that are performed.

EXTERNALIZABLE

It is also possible completely self to address how the objects should be serialized and
deserialized, and again could performance be a reason. The class that should be serialized
must instead of Serializable implement the interface Externalizable, which defines two
methods writeExternal() and readExternal():

JAVA 5: FILES AND JAVA IO

59

JAVA.IO

 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

Carlo Jensen
Not desirialized
Carlo Jensen
26-12-2016 12:14:51:792

You should note that the serialization and deserialization syntactically happens in exactly
the same way. It’s just some other methods that are performed.

EXTERNALIZABLE

It is also possible completely self to address how the objects should be serialized and
deserialized, and again could performance be a reason. The class that should be serialized
must instead of Serializable implement the interface Externalizable, which defines two
methods writeExternal() and readExternal():

class King implements Externalizable
{
 private String name;
 private int from;
 private int to;

 public King()
 {
 }

 public King(String name, int from, int to)
 {
 this.name = name;
 this.from = from;
 this.to = to;
 }

JAVA 5: FILES AND JAVA IO

60

java.Io

60

JAVA 5: FILES AND JAVA IO

60

JAVA.IO

60

 public String toString()
 {
 if (from == Integer.MIN_VALUE && to == Integer.MIN_VALUE) return name;
 if (to == Integer.MIN_VALUE) return name + String.format(" : %d -", from);
 if (from == Integer.MIN_VALUE) return name + String.format(" : – %d", to);
 return name + String.format(" : %d – %d", from, to);
 }
 public void writeExternal(ObjectOutput out) throws IOException
 {
 out.writeUTF(name);
 out.writeInt(from);
 out.writeInt(to);
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException
 {
 name = in.readUTF();
 from = in.readInt();
 to = in.readInt();
 }
}

http://s.bookboon.com/Subscrybe

JAVA 5: FILES AND JAVA IO

61

java.Io

These methods must then respectively write to an ObjectOutput and reading from an
ObjectInput, there are the interfaces, as are implemented by an ObjectOutputStream and an
ObjectInputStream. The syntax for serialization and deserialization of an object is in turn
the same as before:

JAVA 5: FILES AND JAVA IO

61

JAVA.IO

These methods must then respectively write to an ObjectOutput and reading from an
ObjectInput, there are the interfaces, as are implemented by an ObjectOutputStream and an
ObjectInputStream. The syntax for serialization and deserialization of an object is in turn
the same as before:

private static void test14()
{
 try (ObjectOutputStream stream =
 new ObjectOutputStream(new FileOutputStream("king")))
 {
 King king = new King("Knud den Hellige", 1080, 1086);
 stream.writeObject(king);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (ObjectInputStream stream =
 new ObjectInputStream(new FileInputStream("king")))
 {
 King king = (King)stream.readObject();
 System.out.println(king);
 }
 catch (ClassNotFoundException ex)
 {
 System.out.println(ex);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

JAVA 5: FILES AND JAVA IO

62

java.Io

2.5 CHARACTER STREAMS

There also is a family of classes that are used to stream a sequence of characters and thus a
text. In fact, they are far more often needed than directly stream a sequence of bytes (and
hence the raw data). In Java is text or characters represented as 2 bytes unicodes, but when
they are streamed to a file, a character fill one or a few bytes as text is encoded as UTF8.
All the regular letters occupies only one byte, while others that are not so frequently used
characters, including national characters occupies 2 or more bytes. The goal is simple to
reduce the number of bytes sent over a stream. Stream classes to characters must handle the
necessary conversion that happens transparently without the programmer’s involvement – at
least as long that the program should not be used anywhere in this world. Strictly speaking,
not the same encoding are used everywhere but the entire Western world uses the same
encoding. If you need internationalization, it is possible to specify the encoding to be used,
but otherwise stream classes uses an encoding based on the machine’s local setting. Below
is an example that writes text to a file and read the text again:

JAVA 5: FILES AND JAVA IO

62

JAVA.IO

2.5 CHARACTER STREAMS

There also is a family of classes that are used to stream a sequence of characters and thus a
text. In fact, they are far more often needed than directly stream a sequence of bytes (and
hence the raw data). In Java is text or characters represented as 2 bytes unicodes, but when
they are streamed to a file, a character fill one or a few bytes as text is encoded as UTF8.
All the regular letters occupies only one byte, while others that are not so frequently used
characters, including national characters occupies 2 or more bytes. The goal is simple to
reduce the number of bytes sent over a stream. Stream classes to characters must handle the
necessary conversion that happens transparently without the programmer’s involvement – at
least as long that the program should not be used anywhere in this world. Strictly speaking,
not the same encoding are used everywhere but the entire Western world uses the same
encoding. If you need internationalization, it is possible to specify the encoding to be used,
but otherwise stream classes uses an encoding based on the machine’s local setting. Below
is an example that writes text to a file and read the text again:

private static void test15()
{
 try (FileWriter writer = new FileWriter("names"))
 {
 writer.write("Gorm den Gamle\n");
 writer.write("Harald Blåtand\n");
 writer.write("Svend Tveskæg\n");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 char[] buffer = new char[20];
 try (FileReader reader = new FileReader("names"))
 {
 for (int count = reader.read(buffer, 0, buffer.length); count != -1;
 count = reader.read(buffer, 0, buffer.length))
 for (int i = 0; i < count; ++i) System.out.print(buffer[i]);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

JAVA 5: FILES AND JAVA IO

63

java.Io

63

The methods writes strings separated by line breaks, and the text are loaded again in a
buffer whose content then are printed on the screen. When you in this way wants to deal
with text files, you will usually encapsulate both the writer and the reader in a buffer, and
here you should especially notice how to read files with the method readLine() and thus
perceive the file as line-oriented:

JAVA 5: FILES AND JAVA IO

63

JAVA.IO

63

The methods writes strings separated by line breaks, and the text are loaded again in a
buffer whose content then are printed on the screen. When you in this way wants to deal
with text files, you will usually encapsulate both the writer and the reader in a buffer, and
here you should especially notice how to read files with the method readLine() and thus
perceive the file as line-oriented:

private static void test16()
{
 try (BufferedWriter writer = new BufferedWriter(new FileWriter("names")))
 {
 writer.write("Gorm den Gamle");
 writer.newLine();
 writer.write("Harald Blåtand");
 writer.newLine();
 writer.write("Svend Tveskæg");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (BufferedReader reader = new BufferedReader(new FileReader("names")))
 {

http://s.bookboon.com/volvo

JAVA 5: FILES AND JAVA IO

64

java.Io
JAVA 5: FILES AND JAVA IO

64

JAVA.IO

 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

In the above example I used a FileWriter and FileReader as character-oriented stream classes
to files and including BufferedWriter and BufferedReader, but there are other Reader and
Writer classes, there most be important:

 - FileReader FileWriter
 - FilterReader FilterWriter
 - StringReader StringWriter
 - PipedReader PipeWriter
 - CharArrayReader CharArrayWriter
 - InputStreamReader OutputStreamWriter
 - PrintWriter

You should also note that a FileReader and FileWriter is wrapper classes for respectively an
InputStreamReader and an OutputStreamWriter.

Sometimes it is recommended not to use the FileReader and FileWriter, as they do not allow
you to enter any Encoding. The same method as above can be written as follows where you
indicates the encoding:

private static void test17()
{
 try (BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(new FileOutputStream("navne2"), "ISO-8859-1")))
 {
 writer.write("Gorm den Gamle");
 writer.newLine();
 writer.write("Harald Blåtand");
 writer.newLine();
 writer.write("Svend Tveskæg");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }

In the above example I used a FileWriter and FileReader as character-oriented stream classes
to files and including BufferedWriter and BufferedReader, but there are other Reader and
Writer classes, there most be important:

 - FileReader FileWriter
 - FilterReader FilterWriter
 - StringReader StringWriter
 - PipedReader PipeWriter
 - CharArrayReader CharArrayWriter
 - InputStreamReader OutputStreamWriter
 - PrintWriter

You should also note that a FileReader and FileWriter is wrapper classes for respectively an
InputStreamReader and an OutputStreamWriter.

Sometimes it is recommended not to use the FileReader and FileWriter, as they do not allow
you to enter any Encoding. The same method as above can be written as follows where you
indicates the encoding:

JAVA 5: FILES AND JAVA IO

64

JAVA.IO

 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

In the above example I used a FileWriter and FileReader as character-oriented stream classes
to files and including BufferedWriter and BufferedReader, but there are other Reader and
Writer classes, there most be important:

 - FileReader FileWriter
 - FilterReader FilterWriter
 - StringReader StringWriter
 - PipedReader PipeWriter
 - CharArrayReader CharArrayWriter
 - InputStreamReader OutputStreamWriter
 - PrintWriter

You should also note that a FileReader and FileWriter is wrapper classes for respectively an
InputStreamReader and an OutputStreamWriter.

Sometimes it is recommended not to use the FileReader and FileWriter, as they do not allow
you to enter any Encoding. The same method as above can be written as follows where you
indicates the encoding:

private static void test17()
{
 try (BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(new FileOutputStream("navne2"), "ISO-8859-1")))
 {
 writer.write("Gorm den Gamle");
 writer.newLine();
 writer.write("Harald Blåtand");
 writer.newLine();
 writer.write("Svend Tveskæg");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }

JAVA 5: FILES AND JAVA IO

65

java.Io
JAVA 5: FILES AND JAVA IO

65

JAVA.IO

 try (BufferedReader reader =
 new BufferedReader(new InputStreamReader(
 new FileInputStream("navne2"), "ISO-8859-1")))
 {
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

In this case, indicates the encoding that it not should be UTF8 but ISO 8859-1, in which
all characters are encoded as a single byte. The main use of this option is that you may
need to read text files created with another program and then not may be UTF8 encoded.

PROBLEM 2

The folder to this book contains three text files called

1. regions, that contains a line for each Danish region where a line consists of a region
number and the name of the region separated by commas

2. municipalities, that contains a line for each Danish municipality, where the line
consists of the municipality’s number, the name og the municipality and the
number of the region that the municipality belongs and where the three fields are
separated by commas

3. zipcodes, that contains a line for each zip code, where the line consists of the postal
code and the city name, followed by one or more municipality numbers indicating
the municipalities that use this zip code and where all fields are separated by commas

You must now create a new project in NetBeans, as you for example can call for Denmark.
You must then add the following three interfaces to your project and write classes that
implements these interfaces:

package denmark;
/**
 * Interface, thar defines a region.
 * Two regions are equal if they have the same region number.
 * Regions are ordred ascending after name.
 * The iterator pattern must be implemented to iterates this
 * region's municipalities.
 */

In this case, indicates the encoding that it not should be UTF8 but ISO 8859-1, in which
all characters are encoded as a single byte. The main use of this option is that you may
need to read text files created with another program and then not may be UTF8 encoded.

PROBLEM 2

The folder to this book contains three text files called

1. regions, that contains a line for each Danish region where a line consists of a region
number and the name of the region separated by commas

2. municipalities, that contains a line for each Danish municipality, where the line
consists of the municipality’s number, the name og the municipality and the
number of the region that the municipality belongs and where the three fields are
separated by commas

3. zipcodes, that contains a line for each zip code, where the line consists of the postal
code and the city name, followed by one or more municipality numbers indicating
the municipalities that use this zip code and where all fields are separated by commas

You must now create a new project in NetBeans, as you for example can call for Denmark.
You must then add the following three interfaces to your project and write classes that
implements these interfaces:

JAVA 5: FILES AND JAVA IO

65

JAVA.IO

 try (BufferedReader reader =
 new BufferedReader(new InputStreamReader(
 new FileInputStream("navne2"), "ISO-8859-1")))
 {
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

In this case, indicates the encoding that it not should be UTF8 but ISO 8859-1, in which
all characters are encoded as a single byte. The main use of this option is that you may
need to read text files created with another program and then not may be UTF8 encoded.

PROBLEM 2

The folder to this book contains three text files called

1. regions, that contains a line for each Danish region where a line consists of a region
number and the name of the region separated by commas

2. municipalities, that contains a line for each Danish municipality, where the line
consists of the municipality’s number, the name og the municipality and the
number of the region that the municipality belongs and where the three fields are
separated by commas

3. zipcodes, that contains a line for each zip code, where the line consists of the postal
code and the city name, followed by one or more municipality numbers indicating
the municipalities that use this zip code and where all fields are separated by commas

You must now create a new project in NetBeans, as you for example can call for Denmark.
You must then add the following three interfaces to your project and write classes that
implements these interfaces:

package denmark;
/**
 * Interface, thar defines a region.
 * Two regions are equal if they have the same region number.
 * Regions are ordred ascending after name.
 * The iterator pattern must be implemented to iterates this
 * region's municipalities.
 */

JAVA 5: FILES AND JAVA IO

66

java.Io

66

JAVA 5: FILES AND JAVA IO

66

JAVA.IO

66

public interface IRegion extends
 Comparable<IRegion>, Iterable<IMunicipality>, java.io.Serializable
{
 /**
 * @return The region's number
 */
 public int getRnr();

 /**
 * @return The regions name
 */
 public String getName();

 /**
 * @return Number of municipalities in this region
 */
 public int getSize();

 /**
 * Returns the municipality in this region with number mnr
 * @param mnr Municipality number
 * @return The municipality in this region with number mnr
 * @throws Exception If the region not has a municipality with number mnr
 */

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 5: FILES AND JAVA IO

67

java.Io
JAVA 5: FILES AND JAVA IO

67

JAVA.IO

 public IMunicipality getMunicipality(int mnr) throws Exception;

 /**
 * Change the region's name
 * @param name The regions name
 */
 public void setName(String name);

 /**
 * Add a municipality to this region.
 * @param municipality The municipality to be added
 * @throws Exception If the region already has a municipality with that number
 */
 public void addMunicipality(IMunicipality municipality) throws Exception;

 /**
 * Remove a municipality from this region.
 * @param mnr Number of the municipality to be removed
 * @return True, if the municipality is removed
 */
 public boolean removeMunicipality(int mnr);
}

package denmark;

/**
 * Interface, that defines a municipality.
 * Two municipalities are considered equal if they have the same
 * municipality number.
 * Municipalities are ordered ascending by municipality name.
 * Iterator mønsteret definerer at man kan iterere over denne kommunes postnumre.
 */
public interface IMunicipality extends
 Comparable<IMunicipality>, Iterable<IZipcode>, java.io.Serializable
{
 /**
 * @return The municipality's number
 */
 public int getMnr();

 /**
 * @return The municipality's name
 */
 public String getName();

JAVA 5: FILES AND JAVA IO

68

java.Io

JAVA 5: FILES AND JAVA IO

68

JAVA.IO

 /**
 * @return The region in which this municipality belongs
 */
 public IRegion getRegion();

 /**
 * @return Number of zip codes, as this municipality uses
 */
 public int getSize();

 /**
 * Returns the zip code with the number code if this municipality uses
 * this zip code.
 * @param code The code of the zip code to be returned
 * @return The zip code with the number code if this municipality uses this code.
 * @throws Exception If the municipality does not use this code
 */
 public IZipcode getZipcode(String code) throws Exception;

 /**
 * Changes the name of the municipality
 * @param name The new name
 */
 public void setName(String name);

 /**
 * Move this municipality in another region.
 * @param region The other region
 */
 public void setRegion(IRegion region);

 /**
 * Adds a zip code to this municipality, thus indicating a zip code that
 * this municipality uses.
 * @param zipcode The zip code that should be added
 * @throws Exception If this municipality already uses this code
 */
 public void addZipcode(IZipcode zipcode) throws Exception;

 /**
 * Removing a zip code from this municipality, thus indicating that
 * this municipality does not use the code.
 * @param code The zip code to be removed
 * @return True, if the zip code was removed
 */
 public boolean removeZipcode(String code);
}

JAVA 5: FILES AND JAVA IO

69

java.Io

69

JAVA 5: FILES AND JAVA IO

69

JAVA.IO

69

package denmark;
/**
 * Interface, that defines a zip code.
 * Two zip codes are considered equal if they have the same number.
 * Zip codes are ordered ascending by the code.
 * the iterator pattern defines that you can iterates the municipalities, that
 * use this zip code.
 */
public interface IZipcode extends
 Comparable<IZipcode>, Iterable<IMunicipality>, java.io.Serializable
{
 /**
 * @return The code
 */
 public String getCode();

 /**
 * @return The city
 */
 public String getCity();

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 5: FILES AND JAVA IO

70

java.Io
JAVA 5: FILES AND JAVA IO

70

JAVA.IO

 /**
 * @return Number of municipalities that uses this zip code.
 */
 public int getSize();

 /**
 * Returns the municipality with number mnr if the municipality uses
 * this zip code.
 * @param mnr Municipality number
 * @return The municipality with number mnr if the municipality uses this code.
 * @throws Exception If the municipality with number mnr uses this zip code
 */
 public IMunicipality getMunicipality(int mnr) throws Exception;

 /**
 * Changed the zip code's city name
 * @param city City name
 */
 public void setCity(String city);

 /**
 * Adds a municipality to this Zipcode object and thus indicates that this
 * zip code is used by the municipality.
 * @param municipality The municipality to be added
 * @throws Exception If the municipality already added
 */
 public void addMunicipality(IMunicipality municipality) throws Exception;

 /**
 * Removes the municipality with the number mnr from this zip code and
 * thus indicates that the municipality does not use this zip code.
 * @param mnr The number of the municipality to be removed
 * @return True, if the municipality was removed
 */
 public boolean removeMunicipality(int mnr);
}

You must then write the following class, when the class must be written as a singleton:

package denmark;

import java.util.*;
import java.io.*;

You must then write the following class, when the class must be written as a singleton:

JAVA 5: FILES AND JAVA IO

70

JAVA.IO

 /**
 * @return Number of municipalities that uses this zip code.
 */
 public int getSize();

 /**
 * Returns the municipality with number mnr if the municipality uses
 * this zip code.
 * @param mnr Municipality number
 * @return The municipality with number mnr if the municipality uses this code.
 * @throws Exception If the municipality with number mnr uses this zip code
 */
 public IMunicipality getMunicipality(int mnr) throws Exception;

 /**
 * Changed the zip code's city name
 * @param city City name
 */
 public void setCity(String city);

 /**
 * Adds a municipality to this Zipcode object and thus indicates that this
 * zip code is used by the municipality.
 * @param municipality The municipality to be added
 * @throws Exception If the municipality already added
 */
 public void addMunicipality(IMunicipality municipality) throws Exception;

 /**
 * Removes the municipality with the number mnr from this zip code and
 * thus indicates that the municipality does not use this zip code.
 * @param mnr The number of the municipality to be removed
 * @return True, if the municipality was removed
 */
 public boolean removeMunicipality(int mnr);
}

You must then write the following class, when the class must be written as a singleton:

package denmark;

import java.util.*;
import java.io.*;

JAVA 5: FILES AND JAVA IO

71

java.Io
JAVA 5: FILES AND JAVA IO

71

JAVA.IO

public class Repository implements Serializable
{
 private static String filename = "denmark"; // filename to serialization the data
 private static Repository instance = null; // variable to an instance
 private List<IRegion> regions; // to regions
 private List<IMunicipality> municipalities; // to municipalities
 private List<IZipcode> zipcodes; // to zip codes

 public static Repository getInstance()
 {
 }

 /**
 * Returns the zip code from the code.
 * @param code The code
 * @return The zip code if it is found and else null
 */
 public IZipcode getZipcode(String code)
 {
 }

 /**
 * Returns the region with region number rnr.
 * @param rnr Region number
 * @return The region if it is found and else null
 */
 public IRegion getRegion(int rnr)
 {
 }

 /**
 * Returns the municipality with number mnr.
 * @param mnr Municipality number
 * @return The municipality if it is found and else null
 */
 public IMunicipality getMunicipality(int mnr)
 {
 }

 /**
 * @return Iterator, that iterates til zip codes.
 */
 public Iterator<IZipcode> itrZipcode()
 {
 }

JAVA 5: FILES AND JAVA IO

72

java.Io

72

JAVA 5: FILES AND JAVA IO

72

JAVA.IO

72

 /**
 * @return Iterator, that iterates til regions.
 */
 public Iterator<IRegion> itrRegioner()
 {
 }

 /**
 * @return Iterator, that iterates til municipalities.
 */
 public Iterator<IMunicipality> itrMunicipality()
 {
 }

 private Repository()
 {
 }
}

The class is defined Serializable, and the private constructor must start by deserialize an
object of the type Repository. Is it not possible, the constructor instead must initialize an
object from the contents of the three text files and then serialize the object.

The class is defined Serializable, and the private constructor must start by deserialize an
object of the type Repository. Is it not possible, the constructor instead must initialize an
object from the contents of the three text files and then serialize the object.

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 5: FILES AND JAVA IO

73

java.Io

The program should open the window, as shown below where it should be possible to
search for regions, municipalities and zip codes. You can enter the following search texts:

1. Region that matches all regions where the name contains the search text
2. Municipality, that matches all municipalities where the name contains with the

search text
3. City that matches all zip codes where the city starts with the search text
4. Zip code that maches all zip codes where the code starts with the search text

It is a part of the task to decide what it will mean if a search is combined of several criteria,
but if, for example you searches municipalities and typed something for municipality and
city, it might for example mean that you should see the names of all the municipalities
where the municipality’s name contains the search text for municipality and the municipality
uses the zip code that matches the search text for city name.

JAVA 5: FILES AND JAVA IO

74

java.Io

2.6 TEXT SCANNER

During data entry for console applications I have used the class Scanner, and it can be used
for anything other than simply entering data. Basicly a Scanner is an object that scans a
character-oriented stream and divides the stream into tokens. Consider as an example the
following method:

JAVA 5: FILES AND JAVA IO

74

JAVA.IO

2.6 TEXT SCANNER

During data entry for console applications I have used the class Scanner, and it can be used
for anything other than simply entering data. Basicly a Scanner is an object that scans a
character-oriented stream and divides the stream into tokens. Consider as an example the
following method:

private static void test18()
{
 try (BufferedWriter writer = new BufferedWriter(new FileWriter("names")))
 {
 writer.write("Gorm den Gamle");
 writer.newLine();
 writer.write("Harald Blåtand");
 writer.newLine();
 writer.write("Svend Tveskæg");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (Scanner scan = new Scanner(new BufferedReader(new FileReader("names"))))
 {
// scan.useDelimiter("\n");
 while (scan.hasNext()) System.out.println(scan.next());
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method starts by creating a text file called names. Then the method writes three lines to
the file, as are names of three Danish kings. The last part of the method creates a scanner,
which scans the file names and then prints the tokens, that is determined, with one token
at each line. The result is:

Gorm
den
Gamle
Harald
Blåtand
Svend
Tveskæg

The method starts by creating a text file called names. Then the method writes three lines to
the file, as are names of three Danish kings. The last part of the method creates a scanner,
which scans the file names and then prints the tokens, that is determined, with one token
at each line. The result is:

JAVA 5: FILES AND JAVA IO

74

JAVA.IO

2.6 TEXT SCANNER

During data entry for console applications I have used the class Scanner, and it can be used
for anything other than simply entering data. Basicly a Scanner is an object that scans a
character-oriented stream and divides the stream into tokens. Consider as an example the
following method:

private static void test18()
{
 try (BufferedWriter writer = new BufferedWriter(new FileWriter("names")))
 {
 writer.write("Gorm den Gamle");
 writer.newLine();
 writer.write("Harald Blåtand");
 writer.newLine();
 writer.write("Svend Tveskæg");
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (Scanner scan = new Scanner(new BufferedReader(new FileReader("names"))))
 {
// scan.useDelimiter("\n");
 while (scan.hasNext()) System.out.println(scan.next());
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method starts by creating a text file called names. Then the method writes three lines to
the file, as are names of three Danish kings. The last part of the method creates a scanner,
which scans the file names and then prints the tokens, that is determined, with one token
at each line. The result is:

Gorm
den
Gamle
Harald
Blåtand
Svend
Tveskæg

JAVA 5: FILES AND JAVA IO

75

java.Io

75

By default tokens are separated by a white spaces, which are space, tab and newline.
Therefore, the file names has 7 tokens. If you wish, you can specify how the tokens must
be separated, and it you remove the comment in the above method, only line breaks are
used to separates tokens, and the result is:

JAVA 5: FILES AND JAVA IO

75

JAVA.IO

75

By default tokens are separated by a white spaces, which are space, tab and newline.
Therefore, the file names has 7 tokens. If you wish, you can specify how the tokens must
be separated, and it you remove the comment in the above method, only line breaks are
used to separates tokens, and the result is:

Gorm den Gamle
Harald Blåtand
Svend Tveskæg

The parameter to the method useDelimiter() is a string that can be any regular expression,
and you is thus able to provide very complex patterns for seperation of tokens.

The class Scanner also has methods that can convert tokens to the primitive types – if the
tokens has legal values. Otherwise the conversion throws an exception. Consider as an
example the following method:

private static void test19()
{
 try (BufferedWriter writer = new BufferedWriter(new FileWriter("numbers")))
 {
 Random rand = new Random();

The parameter to the method useDelimiter() is a string that can be any regular expression,
and you is thus able to provide very complex patterns for seperation of tokens.

The class Scanner also has methods that can convert tokens to the primitive types – if the
tokens has legal values. Otherwise the conversion throws an exception. Consider as an
example the following method:

JAVA 5: FILES AND JAVA IO

75

JAVA.IO

75

By default tokens are separated by a white spaces, which are space, tab and newline.
Therefore, the file names has 7 tokens. If you wish, you can specify how the tokens must
be separated, and it you remove the comment in the above method, only line breaks are
used to separates tokens, and the result is:

Gorm den Gamle
Harald Blåtand
Svend Tveskæg

The parameter to the method useDelimiter() is a string that can be any regular expression,
and you is thus able to provide very complex patterns for seperation of tokens.

The class Scanner also has methods that can convert tokens to the primitive types – if the
tokens has legal values. Otherwise the conversion throws an exception. Consider as an
example the following method:

private static void test19()
{
 try (BufferedWriter writer = new BufferedWriter(new FileWriter("numbers")))
 {
 Random rand = new Random();

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 5: FILES AND JAVA IO

76

java.Io
JAVA 5: FILES AND JAVA IO

76

JAVA.IO

 for (int i = 0; i < 10; ++i)
 writer.write(String.format("%d %1.2f\n",
 rand.nextInt(10) + 1, rand.nextDouble() * 100));
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (Scanner scan = new Scanner(new BufferedReader(new FileReader("numbers"))))
 {
 double sum = 0;
 while (scan.hasNext()) sum += scan.nextInt() * scan.nextDouble();
 System.out.println(sum);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method prints 10 lines to a file in which each line contains an integer and a decimal
number separated by a space. Next, the file is scanned, but as part of the scan the elements
are converted (the individual tokens) to either an int or a double and the product is calculated.

EXERCISE 5

A common use of text files is to transfer data between applications. An application can store
information in a text file that can be sent to a recipient who then read the content of the
file. Often that kind of files are called CSV files. CSV stands for comma separated values,
noting that the file contains values that are separated by a comma. The separation character
do not necessarily needs to be a comma and can be anything. The only requirement is that
it is a character that can not occur in the individual data elements (values). Besides comma
are often used spaces, semicolons, tabulator, or equivalent, but whatever character you use
the file is still called a CSV file. In this exercise you have to write a program that creates
a CSV file and read it again.

Create a new project, you can call CsvFiles. Add a method that creates a text file which
consists of lines that start with a date and is followed by one or more decimal numbers
separated by semicolons. The start of the file could, for example be:

17.04.2014;573,33;228,97;242,14;394,81;190,60;412,17;107,02;249,49;293,29
11.09.2012;325,04;87,59;325,25;465,42
31.12.2013;992,33;695,32

The method prints 10 lines to a file in which each line contains an integer and a decimal
number separated by a space. Next, the file is scanned, but as part of the scan the elements
are converted (the individual tokens) to either an int or a double and the product is calculated.

EXERCISE 5

A common use of text files is to transfer data between applications. An application can store
information in a text file that can be sent to a recipient who then read the content of the
file. Often that kind of files are called CSV files. CSV stands for comma separated values,
noting that the file contains values that are separated by a comma. The separation character
do not necessarily needs to be a comma and can be anything. The only requirement is that
it is a character that can not occur in the individual data elements (values). Besides comma
are often used spaces, semicolons, tabulator, or equivalent, but whatever character you use
the file is still called a CSV file. In this exercise you have to write a program that creates
a CSV file and read it again.

Create a new project, you can call CsvFiles. Add a method that creates a text file which
consists of lines that start with a date and is followed by one or more decimal numbers
separated by semicolons. The start of the file could, for example be:

JAVA 5: FILES AND JAVA IO

76

JAVA.IO

 for (int i = 0; i < 10; ++i)
 writer.write(String.format("%d %1.2f\n",
 rand.nextInt(10) + 1, rand.nextDouble() * 100));
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 try (Scanner scan = new Scanner(new BufferedReader(new FileReader("numbers"))))
 {
 double sum = 0;
 while (scan.hasNext()) sum += scan.nextInt() * scan.nextDouble();
 System.out.println(sum);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method prints 10 lines to a file in which each line contains an integer and a decimal
number separated by a space. Next, the file is scanned, but as part of the scan the elements
are converted (the individual tokens) to either an int or a double and the product is calculated.

EXERCISE 5

A common use of text files is to transfer data between applications. An application can store
information in a text file that can be sent to a recipient who then read the content of the
file. Often that kind of files are called CSV files. CSV stands for comma separated values,
noting that the file contains values that are separated by a comma. The separation character
do not necessarily needs to be a comma and can be anything. The only requirement is that
it is a character that can not occur in the individual data elements (values). Besides comma
are often used spaces, semicolons, tabulator, or equivalent, but whatever character you use
the file is still called a CSV file. In this exercise you have to write a program that creates
a CSV file and read it again.

Create a new project, you can call CsvFiles. Add a method that creates a text file which
consists of lines that start with a date and is followed by one or more decimal numbers
separated by semicolons. The start of the file could, for example be:

17.04.2014;573,33;228,97;242,14;394,81;190,60;412,17;107,02;249,49;293,29
11.09.2012;325,04;87,59;325,25;465,42
31.12.2013;992,33;695,32

JAVA 5: FILES AND JAVA IO

77

java.Io

A line could, for example be interpreted as a number of amounts (for example product
sales) as concerning a certain date. You should note, that there can be several lines with the
same date and in any order. The difficult thing is not to create the file, but to creates the
lines to be printed to the file, so you should create some helper methods.

You must then write a method that reads the content of the file, and prints a list as shown
below:

JAVA 5: FILES AND JAVA IO

77

JAVA.IO

A line could, for example be interpreted as a number of amounts (for example product
sales) as concerning a certain date. You should note, that there can be several lines with the
same date and in any order. The difficult thing is not to create the file, but to creates the
lines to be printed to the file, so you should create some helper methods.

You must then write a method that reads the content of the file, and prints a list as shown
below:

02.01.2012: 1848,44
04.01.2012: 3303,82
05.01.2012: 756,04
08.01.2012: 9773,91

The table must show the total sales for each date, and the lines must be sorted by date.

CSV files are typically line oriented, but it need not be the case. You have to write another
method that creates a text file, but the file must consist of elements separated by semikolen
which is alternately a date and a number. Next, write a method that reads the file and prints
an overview as above. Because the file is not line oriented, it must be read in a different
way, and this can advantageously be done by use of a scanner.

The table must show the total sales for each date, and the lines must be sorted by date.

CSV files are typically line oriented, but it need not be the case. You have to write another
method that creates a text file, but the file must consist of elements separated by semikolen
which is alternately a date and a number. Next, write a method that reads the file and prints
an overview as above. Because the file is not line oriented, it must be read in a different
way, and this can advantageously be done by use of a scanner.

JAVA 5: FILES AND JAVA IO

78

java.nIo

78

3 JAVA.NIO

The above defines in principle what is necessary in order to work with files, but modern
operating systems provide many services available that are not supported by the classes in
java.io, and it is the reason for another package called java.nio. Another reason for a new
package for io is also providing better services available to stream data over a network. In
this book I will only look at the new package for files, but in the book about network
programming, I treat other services that java.nio provides. This chapter describes the main
classes in this package. Basically it is about classes to

 - buffers
 - chanels
 - paths

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 5: FILES AND JAVA IO

79

java.nIo

The fundamental concept in the new API’s are buffers. A process as JVM performs IO by
asking the operating system to drain the content of a buffer with a write operation, and
accordingly, the JVM ask the operating system to fill a buffer with a read operation. If the
JVM for instance ask the operating system to read from a disk file, the operating system
will send a command to the disk controller to read a block of bytes from the disk and save
them in an operating system buffer. After this operation is completed, the operating system
copies the content of the buffer to a second buffer in the address space of the specified
process as a parameter of the JVM in the read() operation. One of the goals with java.
nio is to increase the efficiency of the necessary copying of data between buffers, and it is
not simple, particularly because the disk controller always reads/writes with a fixed block
size, while the JVM uses variable sized blocks and even blocks, which are not necessarily
contiguous allocated and can be moved by the garbage collector.

One can think of a channel as a conduit used by the operating system to drain or fill a buffer
with bytes from a device such as a disk controller. An example is a FileChannel, and as its
name suggests it acts as a channel between a program and a disk file. It supports several
things that are not possible with standard IO, and here include a locking mechanisms and
memory mapped files.

Finally are paths java.nio’s representation of the file system.

The following describes the most important classes in the package java.nio, and it is primarily
using simple test methods in the program NioProgram.

3.1 BUFFERS

A buffer is an object that can contain a fixed amount of data that can be sent to or received
from an IO-service, and one can think of a buffer as an object that sits between a program
and a channel. The buffer has basically four characteristics:

1. capacity, that defines how many data elements a Buffer can contain
2. limit, that is a 0-based index, that denotes the first element, that can not be written

or read
3. position, that is a 0-based index, that denotes the position for the next read or write
4. mark, that is a 0-based index, that is used to reset the position

Buffer is an abstract class that provides a number of methods available, but there are concrete
classes for each of the primitive data types, and basically a buffer is an encapsulation of
an array.

JAVA 5: FILES AND JAVA IO

80

java.nIo

You can think of a new created buffer as illustrated in the following figure:

The buffer has a capacity of 10, and the limit has always the same value as capacity and
thus the value 10. The position is initially 0, indicating the element in the buffer, which
can be accessed. position will always have a value between 0 and limit. The pointer mark is
initially undefined. As an example is shown a method that creates a buffer of bytes, which
has space for 10 elements:

JAVA 5: FILES AND JAVA IO

80

JAVA.NIO

You can think of a new created buffer as illustrated in the following figure:

The buffer has a capacity of 10, and the limit has always the same value as capacity and
thus the value 10. The position is initially 0, indicating the element in the buffer, which
can be accessed. position will always have a value between 0 and limit. The pointer mark is
initially undefined. As an example is shown a method that creates a buffer of bytes, which
has space for 10 elements:

private static void test01()
{
 Buffer buffer = ByteBuffer.allocate(10);
 print(buffer);
 buffer.limit(8);
 buffer.position(3);
 print(buffer);
 buffer.flip();
 print(buffer);
 buffer.mark();
 buffer.position(2);
 print(buffer);
 buffer.reset();
 print(buffer);
 buffer.limit(8);
 buffer.position(3);
 print(buffer);
 buffer.rewind();
 print(buffer);
 buffer.clear();
 print(buffer);
 buffer = LongBuffer.allocate(10);
 print(buffer);
}

JAVA 5: FILES AND JAVA IO

81

java.nIo

81

JAVA 5: FILES AND JAVA IO

81

JAVA.NIO

81

private static Buffer print(Buffer buffer)
{
 System.out.println("Capacitet: " + buffer.capacity());
 System.out.println("Limit: " + buffer.limit());
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());
 System.out.println(buffer);
 System.out.println();
 return buffer;
}

The first statement creates the buffer and when the method is performed is the result of
the first print statement:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]

The first statement creates the buffer and when the method is performed is the result of
the first print statement:

JAVA 5: FILES AND JAVA IO

81

JAVA.NIO

81

private static Buffer print(Buffer buffer)
{
 System.out.println("Capacitet: " + buffer.capacity());
 System.out.println("Limit: " + buffer.limit());
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());
 System.out.println(buffer);
 System.out.println();
 return buffer;
}

The first statement creates the buffer and when the method is performed is the result of
the first print statement:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 5: FILES AND JAVA IO

82

java.nIo

Here you can see that limit from start is set to capacity, and the position is 0. You can also
see that the buffer has 10 places available. Next limit is set to 8 and position to 3 and the
second print statement prints the result

JAVA 5: FILES AND JAVA IO

82

JAVA.NIO

Here you can see that limit from start is set to capacity, and the position is 0. You can also
see that the buffer has 10 places available. Next limit is set to 8 and position to 3 and the
second print statement prints the result

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

You must specifically note that there are now 5 places available, and thus only access to
elements with an index less than limit (the elements with index 3, 4, 5, 6 and 7). The next
statement performs a flip(), which means that limit is set to position, while position is set to
0 (and a possible mark to undefined). The result of the third print statement is:

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

The buffer has then free space for 3 elements. The next statement performs a mark(), which
means that the value of the index mark is set to the value of position. Next position is set
to 2 and the buffer is reprinted:

Capacitet: 10
Limit: 3
Position: 2
Remaining: 1
java.nio.HeapByteBuffer[pos=2 lim=3 cap=10]

where there is nothing to explain, but mark has the value 3. The next statement is a reset():

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

You must specifically note that there are now 5 places available, and thus only access to
elements with an index less than limit (the elements with index 3, 4, 5, 6 and 7). The next
statement performs a flip(), which means that limit is set to position, while position is set to
0 (and a possible mark to undefined). The result of the third print statement is:

JAVA 5: FILES AND JAVA IO

82

JAVA.NIO

Here you can see that limit from start is set to capacity, and the position is 0. You can also
see that the buffer has 10 places available. Next limit is set to 8 and position to 3 and the
second print statement prints the result

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

You must specifically note that there are now 5 places available, and thus only access to
elements with an index less than limit (the elements with index 3, 4, 5, 6 and 7). The next
statement performs a flip(), which means that limit is set to position, while position is set to
0 (and a possible mark to undefined). The result of the third print statement is:

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

The buffer has then free space for 3 elements. The next statement performs a mark(), which
means that the value of the index mark is set to the value of position. Next position is set
to 2 and the buffer is reprinted:

Capacitet: 10
Limit: 3
Position: 2
Remaining: 1
java.nio.HeapByteBuffer[pos=2 lim=3 cap=10]

where there is nothing to explain, but mark has the value 3. The next statement is a reset():

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

The buffer has then free space for 3 elements. The next statement performs a mark(), which
means that the value of the index mark is set to the value of position. Next position is set
to 2 and the buffer is reprinted:

JAVA 5: FILES AND JAVA IO

82

JAVA.NIO

Here you can see that limit from start is set to capacity, and the position is 0. You can also
see that the buffer has 10 places available. Next limit is set to 8 and position to 3 and the
second print statement prints the result

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

You must specifically note that there are now 5 places available, and thus only access to
elements with an index less than limit (the elements with index 3, 4, 5, 6 and 7). The next
statement performs a flip(), which means that limit is set to position, while position is set to
0 (and a possible mark to undefined). The result of the third print statement is:

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

The buffer has then free space for 3 elements. The next statement performs a mark(), which
means that the value of the index mark is set to the value of position. Next position is set
to 2 and the buffer is reprinted:

Capacitet: 10
Limit: 3
Position: 2
Remaining: 1
java.nio.HeapByteBuffer[pos=2 lim=3 cap=10]

where there is nothing to explain, but mark has the value 3. The next statement is a reset():

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

where there is nothing to explain, but mark has the value 3. The next statement is a reset():

JAVA 5: FILES AND JAVA IO

82

JAVA.NIO

Here you can see that limit from start is set to capacity, and the position is 0. You can also
see that the buffer has 10 places available. Next limit is set to 8 and position to 3 and the
second print statement prints the result

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

You must specifically note that there are now 5 places available, and thus only access to
elements with an index less than limit (the elements with index 3, 4, 5, 6 and 7). The next
statement performs a flip(), which means that limit is set to position, while position is set to
0 (and a possible mark to undefined). The result of the third print statement is:

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

The buffer has then free space for 3 elements. The next statement performs a mark(), which
means that the value of the index mark is set to the value of position. Next position is set
to 2 and the buffer is reprinted:

Capacitet: 10
Limit: 3
Position: 2
Remaining: 1
java.nio.HeapByteBuffer[pos=2 lim=3 cap=10]

where there is nothing to explain, but mark has the value 3. The next statement is a reset():

Capacitet: 10
Limit: 3
Position: 0
Remaining: 3
java.nio.HeapByteBuffer[pos=0 lim=3 cap=10]

JAVA 5: FILES AND JAVA IO

83

java.nIo

The method reset() sets limit to mark when position is set to 0, and then mark is undefined.
After that limit and position are again assigned the values 8 and 3:

JAVA 5: FILES AND JAVA IO

83

JAVA.NIO

The method reset() sets limit to mark when position is set to 0, and then mark is undefined.
After that limit and position are again assigned the values 8 and 3:

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

after a rewind() is performing. It is a method that set position to 0, and any mark is then
undefined:

Capacitet: 10
Limit: 8
Position: 0
Remaining: 8
java.nio.HeapByteBuffer[pos=0 lim=8 cap=10]

The next statement performs a clear(), which briefly means that all pointers are set back to
start, and thus as they were immediately after the buffer was created:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]

The last two statements creates a new buffer, but this time a buffer to values of the type long:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapLongBuffer[pos=0 lim=10 cap=10]

As can be seen from the example, the type Buffer has a number of methods, which among
other things can be used to manipulate the Buffer’s pointers. These methods all return a
Buffer object (a reference to the Buffer after the operation is performed), and this means
that, instead of writing

buffer.mark();
buffer.position(2);
buffer.reset();

after a rewind() is performing. It is a method that set position to 0, and any mark is then
undefined:

JAVA 5: FILES AND JAVA IO

83

JAVA.NIO

The method reset() sets limit to mark when position is set to 0, and then mark is undefined.
After that limit and position are again assigned the values 8 and 3:

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

after a rewind() is performing. It is a method that set position to 0, and any mark is then
undefined:

Capacitet: 10
Limit: 8
Position: 0
Remaining: 8
java.nio.HeapByteBuffer[pos=0 lim=8 cap=10]

The next statement performs a clear(), which briefly means that all pointers are set back to
start, and thus as they were immediately after the buffer was created:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]

The last two statements creates a new buffer, but this time a buffer to values of the type long:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapLongBuffer[pos=0 lim=10 cap=10]

As can be seen from the example, the type Buffer has a number of methods, which among
other things can be used to manipulate the Buffer’s pointers. These methods all return a
Buffer object (a reference to the Buffer after the operation is performed), and this means
that, instead of writing

buffer.mark();
buffer.position(2);
buffer.reset();

The next statement performs a clear(), which briefly means that all pointers are set back to
start, and thus as they were immediately after the buffer was created:

JAVA 5: FILES AND JAVA IO

83

JAVA.NIO

The method reset() sets limit to mark when position is set to 0, and then mark is undefined.
After that limit and position are again assigned the values 8 and 3:

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

after a rewind() is performing. It is a method that set position to 0, and any mark is then
undefined:

Capacitet: 10
Limit: 8
Position: 0
Remaining: 8
java.nio.HeapByteBuffer[pos=0 lim=8 cap=10]

The next statement performs a clear(), which briefly means that all pointers are set back to
start, and thus as they were immediately after the buffer was created:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]

The last two statements creates a new buffer, but this time a buffer to values of the type long:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapLongBuffer[pos=0 lim=10 cap=10]

As can be seen from the example, the type Buffer has a number of methods, which among
other things can be used to manipulate the Buffer’s pointers. These methods all return a
Buffer object (a reference to the Buffer after the operation is performed), and this means
that, instead of writing

buffer.mark();
buffer.position(2);
buffer.reset();

The last two statements creates a new buffer, but this time a buffer to values of the type long:

JAVA 5: FILES AND JAVA IO

83

JAVA.NIO

The method reset() sets limit to mark when position is set to 0, and then mark is undefined.
After that limit and position are again assigned the values 8 and 3:

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

after a rewind() is performing. It is a method that set position to 0, and any mark is then
undefined:

Capacitet: 10
Limit: 8
Position: 0
Remaining: 8
java.nio.HeapByteBuffer[pos=0 lim=8 cap=10]

The next statement performs a clear(), which briefly means that all pointers are set back to
start, and thus as they were immediately after the buffer was created:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]

The last two statements creates a new buffer, but this time a buffer to values of the type long:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapLongBuffer[pos=0 lim=10 cap=10]

As can be seen from the example, the type Buffer has a number of methods, which among
other things can be used to manipulate the Buffer’s pointers. These methods all return a
Buffer object (a reference to the Buffer after the operation is performed), and this means
that, instead of writing

buffer.mark();
buffer.position(2);
buffer.reset();

As can be seen from the example, the type Buffer has a number of methods, which among
other things can be used to manipulate the Buffer’s pointers. These methods all return a
Buffer object (a reference to the Buffer after the operation is performed), and this means
that, instead of writing

JAVA 5: FILES AND JAVA IO

83

JAVA.NIO

The method reset() sets limit to mark when position is set to 0, and then mark is undefined.
After that limit and position are again assigned the values 8 and 3:

Capacitet: 10
Limit: 8
Position: 3
Remaining: 5
java.nio.HeapByteBuffer[pos=3 lim=8 cap=10]

after a rewind() is performing. It is a method that set position to 0, and any mark is then
undefined:

Capacitet: 10
Limit: 8
Position: 0
Remaining: 8
java.nio.HeapByteBuffer[pos=0 lim=8 cap=10]

The next statement performs a clear(), which briefly means that all pointers are set back to
start, and thus as they were immediately after the buffer was created:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]

The last two statements creates a new buffer, but this time a buffer to values of the type long:

Capacitet: 10
Limit: 10
Position: 0
Remaining: 10
java.nio.HeapLongBuffer[pos=0 lim=10 cap=10]

As can be seen from the example, the type Buffer has a number of methods, which among
other things can be used to manipulate the Buffer’s pointers. These methods all return a
Buffer object (a reference to the Buffer after the operation is performed), and this means
that, instead of writing

buffer.mark();
buffer.position(2);
buffer.reset();

JAVA 5: FILES AND JAVA IO

84

java.nIo

84

you can write

JAVA 5: FILES AND JAVA IO

84

JAVA.NIO

84

you can write

buffer.mark().position(2).reset();

The example shown has two types of buffers

 - ByteBuffer
 - LongBuffer

Both are examples of abstract classes and concrete buffers are created using static methods.
There are also the following buffer classes:

 - CharBuffer
 - ShortBuffer
 - IntBuffer
 - FloatBuffer
 - DoubleBuffer

The example shown has two types of buffers

 - ByteBuffer
 - LongBuffer

Both are examples of abstract classes and concrete buffers are created using static methods.
There are also the following buffer classes:

 - CharBuffer
 - ShortBuffer
 - IntBuffer
 - FloatBuffer
 - DoubleBuffer

http://s.bookboon.com/elearningforkids

JAVA 5: FILES AND JAVA IO

85

java.nIo

CREATE BUFFERS

There are several ways to create a buffer, and the following method presents four options:

JAVA 5: FILES AND JAVA IO

85

JAVA.NIO

CREATE BUFFERS

There are several ways to create a buffer, and the following method presents four options:

private static void test02()
{
 byte[] bytes = new byte[500];
 print(ByteBuffer.allocate(100));
 print(ByteBuffer.allocateDirect(100));
 print(ByteBuffer.wrap(bytes));
 print(ByteBuffer.wrap(bytes, 10, 300));
}

Generally, a buffer is an encapsulation of an array, and wee talk, where appropriate, of a
backing array, but it need not be the case. The above method defines an array to be used
as backing array to a buffer. The most common way to create a buffer, however, is directly
to apply the method allocate() as in the first example above:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.HeapByteBuffer[pos=0 lim=100 cap=100]

There is not much to add in relation to the first example and the result is a buffer having
a capacity of 100 bytes, and wherein the limit is equal to the capacity and the position is
0. The next buffer is almost identical:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.DirectByteBuffer[pos=0 lim=100 cap=100]

but you should note that the types are different, where the type of the first is HeapByteBuffer,
while the type of the last is DirectByteBuffer. The difference is explained later. That I am
talking about buffers to bytes, is not so important, and the syntax would be the same if
there instead were talking about buffers to elements of the other primitive types.

The third buffer encapsulates the array of bytes:

Capacitet: 500
Limit: 500
Position: 0
Remaining: 500
java.nio.HeapByteBuffer[pos=0 lim=500 cap=500]

Generally, a buffer is an encapsulation of an array, and wee talk, where appropriate, of a
backing array, but it need not be the case. The above method defines an array to be used
as backing array to a buffer. The most common way to create a buffer, however, is directly
to apply the method allocate() as in the first example above:

JAVA 5: FILES AND JAVA IO

85

JAVA.NIO

CREATE BUFFERS

There are several ways to create a buffer, and the following method presents four options:

private static void test02()
{
 byte[] bytes = new byte[500];
 print(ByteBuffer.allocate(100));
 print(ByteBuffer.allocateDirect(100));
 print(ByteBuffer.wrap(bytes));
 print(ByteBuffer.wrap(bytes, 10, 300));
}

Generally, a buffer is an encapsulation of an array, and wee talk, where appropriate, of a
backing array, but it need not be the case. The above method defines an array to be used
as backing array to a buffer. The most common way to create a buffer, however, is directly
to apply the method allocate() as in the first example above:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.HeapByteBuffer[pos=0 lim=100 cap=100]

There is not much to add in relation to the first example and the result is a buffer having
a capacity of 100 bytes, and wherein the limit is equal to the capacity and the position is
0. The next buffer is almost identical:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.DirectByteBuffer[pos=0 lim=100 cap=100]

but you should note that the types are different, where the type of the first is HeapByteBuffer,
while the type of the last is DirectByteBuffer. The difference is explained later. That I am
talking about buffers to bytes, is not so important, and the syntax would be the same if
there instead were talking about buffers to elements of the other primitive types.

The third buffer encapsulates the array of bytes:

Capacitet: 500
Limit: 500
Position: 0
Remaining: 500
java.nio.HeapByteBuffer[pos=0 lim=500 cap=500]

There is not much to add in relation to the first example and the result is a buffer having
a capacity of 100 bytes, and wherein the limit is equal to the capacity and the position is
0. The next buffer is almost identical:

JAVA 5: FILES AND JAVA IO

85

JAVA.NIO

CREATE BUFFERS

There are several ways to create a buffer, and the following method presents four options:

private static void test02()
{
 byte[] bytes = new byte[500];
 print(ByteBuffer.allocate(100));
 print(ByteBuffer.allocateDirect(100));
 print(ByteBuffer.wrap(bytes));
 print(ByteBuffer.wrap(bytes, 10, 300));
}

Generally, a buffer is an encapsulation of an array, and wee talk, where appropriate, of a
backing array, but it need not be the case. The above method defines an array to be used
as backing array to a buffer. The most common way to create a buffer, however, is directly
to apply the method allocate() as in the first example above:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.HeapByteBuffer[pos=0 lim=100 cap=100]

There is not much to add in relation to the first example and the result is a buffer having
a capacity of 100 bytes, and wherein the limit is equal to the capacity and the position is
0. The next buffer is almost identical:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.DirectByteBuffer[pos=0 lim=100 cap=100]

but you should note that the types are different, where the type of the first is HeapByteBuffer,
while the type of the last is DirectByteBuffer. The difference is explained later. That I am
talking about buffers to bytes, is not so important, and the syntax would be the same if
there instead were talking about buffers to elements of the other primitive types.

The third buffer encapsulates the array of bytes:

Capacitet: 500
Limit: 500
Position: 0
Remaining: 500
java.nio.HeapByteBuffer[pos=0 lim=500 cap=500]

but you should note that the types are different, where the type of the first is HeapByteBuffer,
while the type of the last is DirectByteBuffer. The difference is explained later. That I am
talking about buffers to bytes, is not so important, and the syntax would be the same if
there instead were talking about buffers to elements of the other primitive types.

The third buffer encapsulates the array of bytes:

JAVA 5: FILES AND JAVA IO

85

JAVA.NIO

CREATE BUFFERS

There are several ways to create a buffer, and the following method presents four options:

private static void test02()
{
 byte[] bytes = new byte[500];
 print(ByteBuffer.allocate(100));
 print(ByteBuffer.allocateDirect(100));
 print(ByteBuffer.wrap(bytes));
 print(ByteBuffer.wrap(bytes, 10, 300));
}

Generally, a buffer is an encapsulation of an array, and wee talk, where appropriate, of a
backing array, but it need not be the case. The above method defines an array to be used
as backing array to a buffer. The most common way to create a buffer, however, is directly
to apply the method allocate() as in the first example above:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.HeapByteBuffer[pos=0 lim=100 cap=100]

There is not much to add in relation to the first example and the result is a buffer having
a capacity of 100 bytes, and wherein the limit is equal to the capacity and the position is
0. The next buffer is almost identical:

Capacitet: 100
Limit: 100
Position: 0
Remaining: 100
java.nio.DirectByteBuffer[pos=0 lim=100 cap=100]

but you should note that the types are different, where the type of the first is HeapByteBuffer,
while the type of the last is DirectByteBuffer. The difference is explained later. That I am
talking about buffers to bytes, is not so important, and the syntax would be the same if
there instead were talking about buffers to elements of the other primitive types.

The third buffer encapsulates the array of bytes:

Capacitet: 500
Limit: 500
Position: 0
Remaining: 500
java.nio.HeapByteBuffer[pos=0 lim=500 cap=500]

JAVA 5: FILES AND JAVA IO

86

java.nIo

and the result is a buffer with a capacity of 500 elements, a limit of 500 and a position
of 0. You should note that the capacity is determined by the length of the array, and the
type is the same as in the first example. The last buffer is also created as an encapsulation
of the array of bytes, but here you can set a position and a length which means that the
limit will be position + length:

JAVA 5: FILES AND JAVA IO

86

JAVA.NIO

and the result is a buffer with a capacity of 500 elements, a limit of 500 and a position
of 0. You should note that the capacity is determined by the length of the array, and the
type is the same as in the first example. The last buffer is also created as an encapsulation
of the array of bytes, but here you can set a position and a length which means that the
limit will be position + length:

Capacitet: 500
Limit: 310
Position: 10
Remaining: 300
java.nio.HeapByteBuffer[pos=10 lim=310 cap=500]

Buffers created with allocate() and wrap() has a backing array, and you can access this array
with the method array().

You can also create a so-called view buffer that is a buffer that encapsulates a second buffer.
The two buffers have the same data and have the same capacity, but they each have their
limit, position and mark, and a view buffer is simply a matter of being able to manipulate
the same data (the same buffer) in several ways. Consider the following method:

private static void test03()
{
 byte[] bytes = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 ByteBuffer buffer1 = ByteBuffer.wrap(bytes);
 ByteBuffer buffer2 = buffer1.duplicate();
 IntBuffer buffer3 = buffer1.asIntBuffer();
 buffer1.position(4);
 buffer1.limit(6);
 print(buffer1);
 print(buffer2);
 print(buffer3);
}

The method defines a byte array with 8 elements used to create a ByteBuffer named buffer1.
For this object is used the method duplicate() to create a view buffer named buffer2. Next
is created another view buffer named buffer3, but this time with the method asIntBuffer().
This buffer allows to manipulate the original buffer as was it an IntBuffer. As a next step
the position and limit for buffer1 are set, after which the buffer it is printed:

Capacitet: 8
Limit: 6
Position: 4
Remaining: 2
java.nio.HeapByteBuffer[pos=4 lim=6 cap=8]

Buffers created with allocate() and wrap() has a backing array, and you can access this array
with the method array().

You can also create a so-called view buffer that is a buffer that encapsulates a second buffer.
The two buffers have the same data and have the same capacity, but they each have their
limit, position and mark, and a view buffer is simply a matter of being able to manipulate
the same data (the same buffer) in several ways. Consider the following method:

JAVA 5: FILES AND JAVA IO

86

JAVA.NIO

and the result is a buffer with a capacity of 500 elements, a limit of 500 and a position
of 0. You should note that the capacity is determined by the length of the array, and the
type is the same as in the first example. The last buffer is also created as an encapsulation
of the array of bytes, but here you can set a position and a length which means that the
limit will be position + length:

Capacitet: 500
Limit: 310
Position: 10
Remaining: 300
java.nio.HeapByteBuffer[pos=10 lim=310 cap=500]

Buffers created with allocate() and wrap() has a backing array, and you can access this array
with the method array().

You can also create a so-called view buffer that is a buffer that encapsulates a second buffer.
The two buffers have the same data and have the same capacity, but they each have their
limit, position and mark, and a view buffer is simply a matter of being able to manipulate
the same data (the same buffer) in several ways. Consider the following method:

private static void test03()
{
 byte[] bytes = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 ByteBuffer buffer1 = ByteBuffer.wrap(bytes);
 ByteBuffer buffer2 = buffer1.duplicate();
 IntBuffer buffer3 = buffer1.asIntBuffer();
 buffer1.position(4);
 buffer1.limit(6);
 print(buffer1);
 print(buffer2);
 print(buffer3);
}

The method defines a byte array with 8 elements used to create a ByteBuffer named buffer1.
For this object is used the method duplicate() to create a view buffer named buffer2. Next
is created another view buffer named buffer3, but this time with the method asIntBuffer().
This buffer allows to manipulate the original buffer as was it an IntBuffer. As a next step
the position and limit for buffer1 are set, after which the buffer it is printed:

Capacitet: 8
Limit: 6
Position: 4
Remaining: 2
java.nio.HeapByteBuffer[pos=4 lim=6 cap=8]

The method defines a byte array with 8 elements used to create a ByteBuffer named buffer1.
For this object is used the method duplicate() to create a view buffer named buffer2. Next
is created another view buffer named buffer3, but this time with the method asIntBuffer().
This buffer allows to manipulate the original buffer as was it an IntBuffer. As a next step
the position and limit for buffer1 are set, after which the buffer it is printed:

JAVA 5: FILES AND JAVA IO

86

JAVA.NIO

and the result is a buffer with a capacity of 500 elements, a limit of 500 and a position
of 0. You should note that the capacity is determined by the length of the array, and the
type is the same as in the first example. The last buffer is also created as an encapsulation
of the array of bytes, but here you can set a position and a length which means that the
limit will be position + length:

Capacitet: 500
Limit: 310
Position: 10
Remaining: 300
java.nio.HeapByteBuffer[pos=10 lim=310 cap=500]

Buffers created with allocate() and wrap() has a backing array, and you can access this array
with the method array().

You can also create a so-called view buffer that is a buffer that encapsulates a second buffer.
The two buffers have the same data and have the same capacity, but they each have their
limit, position and mark, and a view buffer is simply a matter of being able to manipulate
the same data (the same buffer) in several ways. Consider the following method:

private static void test03()
{
 byte[] bytes = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 ByteBuffer buffer1 = ByteBuffer.wrap(bytes);
 ByteBuffer buffer2 = buffer1.duplicate();
 IntBuffer buffer3 = buffer1.asIntBuffer();
 buffer1.position(4);
 buffer1.limit(6);
 print(buffer1);
 print(buffer2);
 print(buffer3);
}

The method defines a byte array with 8 elements used to create a ByteBuffer named buffer1.
For this object is used the method duplicate() to create a view buffer named buffer2. Next
is created another view buffer named buffer3, but this time with the method asIntBuffer().
This buffer allows to manipulate the original buffer as was it an IntBuffer. As a next step
the position and limit for buffer1 are set, after which the buffer it is printed:

Capacitet: 8
Limit: 6
Position: 4
Remaining: 2
java.nio.HeapByteBuffer[pos=4 lim=6 cap=8]

JAVA 5: FILES AND JAVA IO

87

java.nIo

87

There is not much mystery in the result, but if you subsequently prints buffer2, you will
see that it has a different position and another limit, and are not changed when the buffer1
changes its values:

JAVA 5: FILES AND JAVA IO

87

JAVA.NIO

87

There is not much mystery in the result, but if you subsequently prints buffer2, you will
see that it has a different position and another limit, and are not changed when the buffer1
changes its values:

Capacitet: 8
Limit: 8
Position: 0
Remaining: 8
java.nio.HeapByteBuffer[pos=0 lim=8 cap=8]

since a view buffer has its own indexes. If you prints the last buffer, you get the result:

Capacitet: 2
Limit: 2
Position: 0
Remaining: 2
java.nio.ByteBufferAsIntBufferB[pos=0 lim=2 cap=2]

Its capacity is 2. The array has elements for 8 bytes, which corresponds to 2 ints, and it
corresponds precisely to that this view interprets the underlying array as an int array.

since a view buffer has its own indexes. If you prints the last buffer, you get the result:

JAVA 5: FILES AND JAVA IO

87

JAVA.NIO

87

There is not much mystery in the result, but if you subsequently prints buffer2, you will
see that it has a different position and another limit, and are not changed when the buffer1
changes its values:

Capacitet: 8
Limit: 8
Position: 0
Remaining: 8
java.nio.HeapByteBuffer[pos=0 lim=8 cap=8]

since a view buffer has its own indexes. If you prints the last buffer, you get the result:

Capacitet: 2
Limit: 2
Position: 0
Remaining: 2
java.nio.ByteBufferAsIntBufferB[pos=0 lim=2 cap=2]

Its capacity is 2. The array has elements for 8 bytes, which corresponds to 2 ints, and it
corresponds precisely to that this view interprets the underlying array as an int array.

Its capacity is 2. The array has elements for 8 bytes, which corresponds to 2 ints, and it
corresponds precisely to that this view interprets the underlying array as an int array.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 5: FILES AND JAVA IO

88

java.nIo

READ AND WRITE

Buffers are of course only interesting if you can modify the content, and it means that you
can read the individual elements and change them. This is done with put() and get(), and
both methods are in an absolute and a relative version. Consider the following method:

JAVA 5: FILES AND JAVA IO

88

JAVA.NIO

READ AND WRITE

Buffers are of course only interesting if you can modify the content, and it means that you
can read the individual elements and change them. This is done with put() and get(), and
both methods are in an absolute and a relative version. Consider the following method:

private static void test04()
{
 byte[] bytes = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 ByteBuffer buffer = ByteBuffer.wrap(bytes);
 printElements(buffer);
 buffer.put(3, (byte)23);
 buffer.position(6);
 buffer.put((byte)29);
 bytes[7] = 0x1f;
 printElements(buffer);
}

private static void printElements(ByteBuffer buffer)
{
 for (int i = 0; i < buffer.limit(); ++i) System.out.print(buffer.get(i) + " ");
 System.out.println();
 for (buffer.position(0); buffer.position() < buffer.limit();)
 System.out.print(buffer.get() + " ");
 System.out.println();
}

The method test04() creates a buffer which encapsulates an array of 8 elements. Next the
method prints the content of the buffer in two ways. The first is a regular for loop, where
the individual components are referred to by the method get() and an index. The individual
elements are referred thus by an absolute index, and the index must be greater than or
equal to 0 and less than the limit. The next loop references the elements relative to there
position, and the loop starts with setting the position to 0, and then the loop is iterated as
long as the position is less than the limit. The elements are refered with get() without an
index and the method returns the element to what position is pointing to, and then the
position is counted up by 1. This means that when the loop stops, the position is equal to
limit. The result is

2 3 5 7 11 13 17 19
2 3 5 7 11 13 17 19

The method test04() creates a buffer which encapsulates an array of 8 elements. Next the
method prints the content of the buffer in two ways. The first is a regular for loop, where
the individual components are referred to by the method get() and an index. The individual
elements are referred thus by an absolute index, and the index must be greater than or
equal to 0 and less than the limit. The next loop references the elements relative to there
position, and the loop starts with setting the position to 0, and then the loop is iterated as
long as the position is less than the limit. The elements are refered with get() without an
index and the method returns the element to what position is pointing to, and then the
position is counted up by 1. This means that when the loop stops, the position is equal to
limit. The result is

JAVA 5: FILES AND JAVA IO

88

JAVA.NIO

READ AND WRITE

Buffers are of course only interesting if you can modify the content, and it means that you
can read the individual elements and change them. This is done with put() and get(), and
both methods are in an absolute and a relative version. Consider the following method:

private static void test04()
{
 byte[] bytes = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 ByteBuffer buffer = ByteBuffer.wrap(bytes);
 printElements(buffer);
 buffer.put(3, (byte)23);
 buffer.position(6);
 buffer.put((byte)29);
 bytes[7] = 0x1f;
 printElements(buffer);
}

private static void printElements(ByteBuffer buffer)
{
 for (int i = 0; i < buffer.limit(); ++i) System.out.print(buffer.get(i) + " ");
 System.out.println();
 for (buffer.position(0); buffer.position() < buffer.limit();)
 System.out.print(buffer.get() + " ");
 System.out.println();
}

The method test04() creates a buffer which encapsulates an array of 8 elements. Next the
method prints the content of the buffer in two ways. The first is a regular for loop, where
the individual components are referred to by the method get() and an index. The individual
elements are referred thus by an absolute index, and the index must be greater than or
equal to 0 and less than the limit. The next loop references the elements relative to there
position, and the loop starts with setting the position to 0, and then the loop is iterated as
long as the position is less than the limit. The elements are refered with get() without an
index and the method returns the element to what position is pointing to, and then the
position is counted up by 1. This means that when the loop stops, the position is equal to
limit. The result is

2 3 5 7 11 13 17 19
2 3 5 7 11 13 17 19

JAVA 5: FILES AND JAVA IO

89

java.nIo

After the content of the buffer are printed the elements with index 3 is changed to 23. It is
by the method put() but with an absolute index. You should note that this operation does
not change the value of position. Next the position is set to 6 and the value at position 6 is
changed to 29. It also happens with put(), but without specifying an index and thus relative
to the position, and after the operation is performed, the position is counted forward with
1. Finally the value of the last place in the backing the array is directly changed to 31, and
is the buffer printed the result is:

JAVA 5: FILES AND JAVA IO

89

JAVA.NIO

After the content of the buffer are printed the elements with index 3 is changed to 23. It is
by the method put() but with an absolute index. You should note that this operation does
not change the value of position. Next the position is set to 6 and the value at position 6 is
changed to 29. It also happens with put(), but without specifying an index and thus relative
to the position, and after the operation is performed, the position is counted forward with
1. Finally the value of the last place in the backing the array is directly changed to 31, and
is the buffer printed the result is:

2 3 5 23 11 13 29 31
2 3 5 23 11 13 29 31

get() and put() may also have an array as a parameter, and it can be used to, respectively,
get more elements out of a buffer and modifying the multiple elements in a buffer more
efficiently. Consider the following method:

private static void test05()
{
 byte[] bytes1 = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 byte[] bytes2 = { 0x17, 0x1d, 0x1f, 0x25, 0x2b };
 ByteBuffer buffer = ByteBuffer.allocate(8);
 printElements(buffer);
 buffer.position(0);
 buffer.put(bytes1);
 printElements(buffer);
 buffer.position(2);
 buffer.put(bytes2, 1, 3);
 printElements(buffer);
 byte[] bytes3 = new byte[4];
 byte[] bytes4 = new byte[8];
 buffer.position(2);
 buffer.get(bytes3);
 buffer.position(2);
 buffer.get(bytes4, 3, 3);
 printElements(ByteBuffer.wrap(bytes3));
 printElements(ByteBuffer.wrap(bytes4));
}

This method creates a buffer with room for 8 elements and prints the contents:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

get() and put() may also have an array as a parameter, and it can be used to, respectively,
get more elements out of a buffer and modifying the multiple elements in a buffer more
efficiently. Consider the following method:

JAVA 5: FILES AND JAVA IO

89

JAVA.NIO

After the content of the buffer are printed the elements with index 3 is changed to 23. It is
by the method put() but with an absolute index. You should note that this operation does
not change the value of position. Next the position is set to 6 and the value at position 6 is
changed to 29. It also happens with put(), but without specifying an index and thus relative
to the position, and after the operation is performed, the position is counted forward with
1. Finally the value of the last place in the backing the array is directly changed to 31, and
is the buffer printed the result is:

2 3 5 23 11 13 29 31
2 3 5 23 11 13 29 31

get() and put() may also have an array as a parameter, and it can be used to, respectively,
get more elements out of a buffer and modifying the multiple elements in a buffer more
efficiently. Consider the following method:

private static void test05()
{
 byte[] bytes1 = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 byte[] bytes2 = { 0x17, 0x1d, 0x1f, 0x25, 0x2b };
 ByteBuffer buffer = ByteBuffer.allocate(8);
 printElements(buffer);
 buffer.position(0);
 buffer.put(bytes1);
 printElements(buffer);
 buffer.position(2);
 buffer.put(bytes2, 1, 3);
 printElements(buffer);
 byte[] bytes3 = new byte[4];
 byte[] bytes4 = new byte[8];
 buffer.position(2);
 buffer.get(bytes3);
 buffer.position(2);
 buffer.get(bytes4, 3, 3);
 printElements(ByteBuffer.wrap(bytes3));
 printElements(ByteBuffer.wrap(bytes4));
}

This method creates a buffer with room for 8 elements and prints the contents:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

This method creates a buffer with room for 8 elements and prints the contents:

JAVA 5: FILES AND JAVA IO

89

JAVA.NIO

After the content of the buffer are printed the elements with index 3 is changed to 23. It is
by the method put() but with an absolute index. You should note that this operation does
not change the value of position. Next the position is set to 6 and the value at position 6 is
changed to 29. It also happens with put(), but without specifying an index and thus relative
to the position, and after the operation is performed, the position is counted forward with
1. Finally the value of the last place in the backing the array is directly changed to 31, and
is the buffer printed the result is:

2 3 5 23 11 13 29 31
2 3 5 23 11 13 29 31

get() and put() may also have an array as a parameter, and it can be used to, respectively,
get more elements out of a buffer and modifying the multiple elements in a buffer more
efficiently. Consider the following method:

private static void test05()
{
 byte[] bytes1 = { 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13 };
 byte[] bytes2 = { 0x17, 0x1d, 0x1f, 0x25, 0x2b };
 ByteBuffer buffer = ByteBuffer.allocate(8);
 printElements(buffer);
 buffer.position(0);
 buffer.put(bytes1);
 printElements(buffer);
 buffer.position(2);
 buffer.put(bytes2, 1, 3);
 printElements(buffer);
 byte[] bytes3 = new byte[4];
 byte[] bytes4 = new byte[8];
 buffer.position(2);
 buffer.get(bytes3);
 buffer.position(2);
 buffer.get(bytes4, 3, 3);
 printElements(ByteBuffer.wrap(bytes3));
 printElements(ByteBuffer.wrap(bytes4));
}

This method creates a buffer with room for 8 elements and prints the contents:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

JAVA 5: FILES AND JAVA IO

90

java.nIo

90

That is, in a buffer created with allocate() elements are all 0. Next the position is set to 0
and the buffer is changed by means of the array bytes1:

JAVA 5: FILES AND JAVA IO

90

JAVA.NIO

90

That is, in a buffer created with allocate() elements are all 0. Next the position is set to 0
and the buffer is changed by means of the array bytes1:

buffer.put(bytes1);

This means that the contents of the array are copied to the buffer and from the starting
position onwards. Therefore, it is necessary to first set position to 0, and after the statement
is completed, the position has shifted eight places forward and thus to the end of the buffer.
When you then prints the buffer, you get

2 3 5 7 11 13 17 19
2 3 5 7 11 13 17 19

There is another version of the put(), which in addition to the array indicates an offset into
the array and the number of elements to be copied:

buffer.put(bytes2, 1, 3);

This means that the contents of the array are copied to the buffer and from the starting
position onwards. Therefore, it is necessary to first set position to 0, and after the statement
is completed, the position has shifted eight places forward and thus to the end of the buffer.
When you then prints the buffer, you get

JAVA 5: FILES AND JAVA IO

90

JAVA.NIO

90

That is, in a buffer created with allocate() elements are all 0. Next the position is set to 0
and the buffer is changed by means of the array bytes1:

buffer.put(bytes1);

This means that the contents of the array are copied to the buffer and from the starting
position onwards. Therefore, it is necessary to first set position to 0, and after the statement
is completed, the position has shifted eight places forward and thus to the end of the buffer.
When you then prints the buffer, you get

2 3 5 7 11 13 17 19
2 3 5 7 11 13 17 19

There is another version of the put(), which in addition to the array indicates an offset into
the array and the number of elements to be copied:

buffer.put(bytes2, 1, 3);

There is another version of the put(), which in addition to the array indicates an offset into
the array and the number of elements to be copied:

JAVA 5: FILES AND JAVA IO

90

JAVA.NIO

90

That is, in a buffer created with allocate() elements are all 0. Next the position is set to 0
and the buffer is changed by means of the array bytes1:

buffer.put(bytes1);

This means that the contents of the array are copied to the buffer and from the starting
position onwards. Therefore, it is necessary to first set position to 0, and after the statement
is completed, the position has shifted eight places forward and thus to the end of the buffer.
When you then prints the buffer, you get

2 3 5 7 11 13 17 19
2 3 5 7 11 13 17 19

There is another version of the put(), which in addition to the array indicates an offset into
the array and the number of elements to be copied:

buffer.put(bytes2, 1, 3);

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 5: FILES AND JAVA IO

91

java.nIo

The position was previously set to 2, and the result is

JAVA 5: FILES AND JAVA IO

91

JAVA.NIO

The position was previously set to 2, and the result is

2 3 29 31 37 13 17 19
2 3 29 31 37 13 17 19

where the places with index 2, 3 and 4 are updated. There are similar overloadings of get(),
where the elements in the buffer is copied to an array. bytes3 is an array with room for 4
elements, and the position is set 2, and the following statement copies the 4 elements to
the array bytes3:

buffer.get(bytes3);

Thus, the array length determines how many elements are copied. If bytes3 is encapsulated
in a buffer and printed you gets

29 31 37 13
29 31 37 13

As the last example is bytes4 an array with room for 8 elements. Position is again set to 2
and are the follwing statement performed

buffer.get(bytes4, 3, 3);

the elements at positions 3, 4 and 5 are copied:

0 0 0 29 31 37 0 0
0 0 0 29 31 37 0 0

A typical use of a buffer is a process (a program) which takes up elements of a buffer, and
wherein the buffer is then connected to a chanel, which drain (taking elements from) the
buffer. The following example defines an array with four strings and a CharBuffer. Then
the method iterates over the strings and for each string the buffer is emptied – the method
clear() that sets the limit to the buffer’s capacity, and position to 0. Next, an inner loop
iterates over each character in the string and fills the characters into the buffer. When the
characters are loaded into the buffer, the buffer is drained by the method printLine(), which
means that the content must be printed from the position 0 to the limit. That is, the limit
should be set to the position, after which the position is to be set to 0 and this can be
done with the method of flip():

where the places with index 2, 3 and 4 are updated. There are similar overloadings of get(),
where the elements in the buffer is copied to an array. bytes3 is an array with room for 4
elements, and the position is set 2, and the following statement copies the 4 elements to
the array bytes3:

JAVA 5: FILES AND JAVA IO

91

JAVA.NIO

The position was previously set to 2, and the result is

2 3 29 31 37 13 17 19
2 3 29 31 37 13 17 19

where the places with index 2, 3 and 4 are updated. There are similar overloadings of get(),
where the elements in the buffer is copied to an array. bytes3 is an array with room for 4
elements, and the position is set 2, and the following statement copies the 4 elements to
the array bytes3:

buffer.get(bytes3);

Thus, the array length determines how many elements are copied. If bytes3 is encapsulated
in a buffer and printed you gets

29 31 37 13
29 31 37 13

As the last example is bytes4 an array with room for 8 elements. Position is again set to 2
and are the follwing statement performed

buffer.get(bytes4, 3, 3);

the elements at positions 3, 4 and 5 are copied:

0 0 0 29 31 37 0 0
0 0 0 29 31 37 0 0

A typical use of a buffer is a process (a program) which takes up elements of a buffer, and
wherein the buffer is then connected to a chanel, which drain (taking elements from) the
buffer. The following example defines an array with four strings and a CharBuffer. Then
the method iterates over the strings and for each string the buffer is emptied – the method
clear() that sets the limit to the buffer’s capacity, and position to 0. Next, an inner loop
iterates over each character in the string and fills the characters into the buffer. When the
characters are loaded into the buffer, the buffer is drained by the method printLine(), which
means that the content must be printed from the position 0 to the limit. That is, the limit
should be set to the position, after which the position is to be set to 0 and this can be
done with the method of flip():

Thus, the array length determines how many elements are copied. If bytes3 is encapsulated
in a buffer and printed you gets

JAVA 5: FILES AND JAVA IO

91

JAVA.NIO

The position was previously set to 2, and the result is

2 3 29 31 37 13 17 19
2 3 29 31 37 13 17 19

where the places with index 2, 3 and 4 are updated. There are similar overloadings of get(),
where the elements in the buffer is copied to an array. bytes3 is an array with room for 4
elements, and the position is set 2, and the following statement copies the 4 elements to
the array bytes3:

buffer.get(bytes3);

Thus, the array length determines how many elements are copied. If bytes3 is encapsulated
in a buffer and printed you gets

29 31 37 13
29 31 37 13

As the last example is bytes4 an array with room for 8 elements. Position is again set to 2
and are the follwing statement performed

buffer.get(bytes4, 3, 3);

the elements at positions 3, 4 and 5 are copied:

0 0 0 29 31 37 0 0
0 0 0 29 31 37 0 0

A typical use of a buffer is a process (a program) which takes up elements of a buffer, and
wherein the buffer is then connected to a chanel, which drain (taking elements from) the
buffer. The following example defines an array with four strings and a CharBuffer. Then
the method iterates over the strings and for each string the buffer is emptied – the method
clear() that sets the limit to the buffer’s capacity, and position to 0. Next, an inner loop
iterates over each character in the string and fills the characters into the buffer. When the
characters are loaded into the buffer, the buffer is drained by the method printLine(), which
means that the content must be printed from the position 0 to the limit. That is, the limit
should be set to the position, after which the position is to be set to 0 and this can be
done with the method of flip():

As the last example is bytes4 an array with room for 8 elements. Position is again set to 2
and are the follwing statement performed

JAVA 5: FILES AND JAVA IO

91

JAVA.NIO

The position was previously set to 2, and the result is

2 3 29 31 37 13 17 19
2 3 29 31 37 13 17 19

where the places with index 2, 3 and 4 are updated. There are similar overloadings of get(),
where the elements in the buffer is copied to an array. bytes3 is an array with room for 4
elements, and the position is set 2, and the following statement copies the 4 elements to
the array bytes3:

buffer.get(bytes3);

Thus, the array length determines how many elements are copied. If bytes3 is encapsulated
in a buffer and printed you gets

29 31 37 13
29 31 37 13

As the last example is bytes4 an array with room for 8 elements. Position is again set to 2
and are the follwing statement performed

buffer.get(bytes4, 3, 3);

the elements at positions 3, 4 and 5 are copied:

0 0 0 29 31 37 0 0
0 0 0 29 31 37 0 0

A typical use of a buffer is a process (a program) which takes up elements of a buffer, and
wherein the buffer is then connected to a chanel, which drain (taking elements from) the
buffer. The following example defines an array with four strings and a CharBuffer. Then
the method iterates over the strings and for each string the buffer is emptied – the method
clear() that sets the limit to the buffer’s capacity, and position to 0. Next, an inner loop
iterates over each character in the string and fills the characters into the buffer. When the
characters are loaded into the buffer, the buffer is drained by the method printLine(), which
means that the content must be printed from the position 0 to the limit. That is, the limit
should be set to the position, after which the position is to be set to 0 and this can be
done with the method of flip():

the elements at positions 3, 4 and 5 are copied:

JAVA 5: FILES AND JAVA IO

91

JAVA.NIO

The position was previously set to 2, and the result is

2 3 29 31 37 13 17 19
2 3 29 31 37 13 17 19

where the places with index 2, 3 and 4 are updated. There are similar overloadings of get(),
where the elements in the buffer is copied to an array. bytes3 is an array with room for 4
elements, and the position is set 2, and the following statement copies the 4 elements to
the array bytes3:

buffer.get(bytes3);

Thus, the array length determines how many elements are copied. If bytes3 is encapsulated
in a buffer and printed you gets

29 31 37 13
29 31 37 13

As the last example is bytes4 an array with room for 8 elements. Position is again set to 2
and are the follwing statement performed

buffer.get(bytes4, 3, 3);

the elements at positions 3, 4 and 5 are copied:

0 0 0 29 31 37 0 0
0 0 0 29 31 37 0 0

A typical use of a buffer is a process (a program) which takes up elements of a buffer, and
wherein the buffer is then connected to a chanel, which drain (taking elements from) the
buffer. The following example defines an array with four strings and a CharBuffer. Then
the method iterates over the strings and for each string the buffer is emptied – the method
clear() that sets the limit to the buffer’s capacity, and position to 0. Next, an inner loop
iterates over each character in the string and fills the characters into the buffer. When the
characters are loaded into the buffer, the buffer is drained by the method printLine(), which
means that the content must be printed from the position 0 to the limit. That is, the limit
should be set to the position, after which the position is to be set to 0 and this can be
done with the method of flip():

A typical use of a buffer is a process (a program) which takes up elements of a buffer, and
wherein the buffer is then connected to a chanel, which drain (taking elements from) the
buffer. The following example defines an array with four strings and a CharBuffer. Then
the method iterates over the strings and for each string the buffer is emptied – the method
clear() that sets the limit to the buffer’s capacity, and position to 0. Next, an inner loop
iterates over each character in the string and fills the characters into the buffer. When the
characters are loaded into the buffer, the buffer is drained by the method printLine(), which
means that the content must be printed from the position 0 to the limit. That is, the limit
should be set to the position, after which the position is to be set to 0 and this can be
done with the method of flip():

JAVA 5: FILES AND JAVA IO

92

java.nIo
JAVA 5: FILES AND JAVA IO

92

JAVA.NIO

private static void test06()
{
 String[] names = { "Erik Ejegod", "Erik Emune",
"Erik Lam", "Erik Plovpenning" };
 CharBuffer buffer = CharBuffer.allocate(100);
 for (int i = 0; i < names.length; ++i)
 {
 buffer.clear();
 for (int j = 0; j < names[i].length(); j++) buffer.put(names[i].charAt(j));
 buffer.flip();
 printLine(buffer);
 }
}

private static void printLine(CharBuffer buffer)
{
 while (buffer.hasRemaining()) System.out.print(buffer.get());
 System.out.println();
}

Note especially how the method printLine() drains the buffer and how to use hasRemaining()
to test whether the position is reached to limit. The method test06() is a kind of prototype
of using a buffer.

Sometimes you is interested to drain a buffer and then subsequently put the indices back as
they were before. It is here that the index mark can help. Consider the following method:

private static void test07()
{
 IntBuffer buffer = IntBuffer.allocate(10);
 buffer.put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19);
 buffer.limit(8).position(2).mark().position(6);
 print(buffer);
 buffer.reset();
 print(buffer);
}

private static void print(IntBuffer buffer)
{
 while (buffer.hasRemaining()) System.out.print(buffer.get() + " ");
 System.out.println();
}

Note especially how the method printLine() drains the buffer and how to use hasRemaining()
to test whether the position is reached to limit. The method test06() is a kind of prototype
of using a buffer.

Sometimes you is interested to drain a buffer and then subsequently put the indices back as
they were before. It is here that the index mark can help. Consider the following method:

JAVA 5: FILES AND JAVA IO

92

JAVA.NIO

private static void test06()
{
 String[] names = { "Erik Ejegod", "Erik Emune",
"Erik Lam", "Erik Plovpenning" };
 CharBuffer buffer = CharBuffer.allocate(100);
 for (int i = 0; i < names.length; ++i)
 {
 buffer.clear();
 for (int j = 0; j < names[i].length(); j++) buffer.put(names[i].charAt(j));
 buffer.flip();
 printLine(buffer);
 }
}

private static void printLine(CharBuffer buffer)
{
 while (buffer.hasRemaining()) System.out.print(buffer.get());
 System.out.println();
}

Note especially how the method printLine() drains the buffer and how to use hasRemaining()
to test whether the position is reached to limit. The method test06() is a kind of prototype
of using a buffer.

Sometimes you is interested to drain a buffer and then subsequently put the indices back as
they were before. It is here that the index mark can help. Consider the following method:

private static void test07()
{
 IntBuffer buffer = IntBuffer.allocate(10);
 buffer.put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19);
 buffer.limit(8).position(2).mark().position(6);
 print(buffer);
 buffer.reset();
 print(buffer);
}

private static void print(IntBuffer buffer)
{
 while (buffer.hasRemaining()) System.out.print(buffer.get() + " ");
 System.out.println();
}

JAVA 5: FILES AND JAVA IO

93

java.nIo

93

This method creates an int buffer with room for 10 numbers. Next, 8 numbers are added
to the buffer. Note the syntax, where the use of the method put() returns a reference to the
buffer after the element has been added. After the 8 numbers are added the limit is set to
8, position 2, and then set a mark in order to finally set position to 6. Then the following
show the indexes:

JAVA 5: FILES AND JAVA IO

93

JAVA.NIO

93

This method creates an int buffer with room for 10 numbers. Next, 8 numbers are added
to the buffer. Note the syntax, where the use of the method put() returns a reference to the
buffer after the element has been added. After the 8 numbers are added the limit is set to
8, position 2, and then set a mark in order to finally set position to 6. Then the following
show the indexes:

 - limit = 8

 - position = 6

 - mark = 2

Then drain the buffer with the method print(), and the result is:

17 19

After the method print() is executed, the following applies regarding the indices:

 - limit = 8

 - position = 8

 - mark = 2

Then drain the buffer with the method print(), and the result is:

JAVA 5: FILES AND JAVA IO

93

JAVA.NIO

93

This method creates an int buffer with room for 10 numbers. Next, 8 numbers are added
to the buffer. Note the syntax, where the use of the method put() returns a reference to the
buffer after the element has been added. After the 8 numbers are added the limit is set to
8, position 2, and then set a mark in order to finally set position to 6. Then the following
show the indexes:

 - limit = 8

 - position = 6

 - mark = 2

Then drain the buffer with the method print(), and the result is:

17 19

After the method print() is executed, the following applies regarding the indices:

 - limit = 8

 - position = 8

 - mark = 2

After the method print() is executed, the following applies regarding the indices:

JAVA 5: FILES AND JAVA IO

93

JAVA.NIO

93

This method creates an int buffer with room for 10 numbers. Next, 8 numbers are added
to the buffer. Note the syntax, where the use of the method put() returns a reference to the
buffer after the element has been added. After the 8 numbers are added the limit is set to
8, position 2, and then set a mark in order to finally set position to 6. Then the following
show the indexes:

 - limit = 8

 - position = 6

 - mark = 2

Then drain the buffer with the method print(), and the result is:

17 19

After the method print() is executed, the following applies regarding the indices:

 - limit = 8

 - position = 8

 - mark = 2

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 5: FILES AND JAVA IO

94

java.nIo

The method test07() now performs a reset() and the result of the indexes are

JAVA 5: FILES AND JAVA IO

94

JAVA.NIO

The method test07() now performs a reset() and the result of the indexes are

 - limit = 8

 - position = 2

 - mark = undefined

and the method print() will finally result in

5 7 11 13 17 19

As the last for read and write I will mention the method compact(), which copies all elements
between the position and limit to start of the buffer. After that, the position is equal to
the limit – position, while the limit is equal to capacity. Consider the following method:

private static void test08()
{
 IntBuffer in = IntBuffer.allocate(10);
 in.put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19).put(23).
 put(29).rewind();
 IntBuffer out = IntBuffer.allocate(10);
 while (in.hasRemaining())
 {
 out.put(in.get());
 if (out.position() == 8 && out.get(0) == 2)
 {
 out.flip().position(2);
 out.compact();
 }
 }
 print(out);
 out.clear();
 print(out);
}

If you performs the method, you get the result

0 0
5 7 11 13 17 19 23 29 0 0

and the method print() will finally result in

JAVA 5: FILES AND JAVA IO

94

JAVA.NIO

The method test07() now performs a reset() and the result of the indexes are

 - limit = 8

 - position = 2

 - mark = undefined

and the method print() will finally result in

5 7 11 13 17 19

As the last for read and write I will mention the method compact(), which copies all elements
between the position and limit to start of the buffer. After that, the position is equal to
the limit – position, while the limit is equal to capacity. Consider the following method:

private static void test08()
{
 IntBuffer in = IntBuffer.allocate(10);
 in.put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19).put(23).
 put(29).rewind();
 IntBuffer out = IntBuffer.allocate(10);
 while (in.hasRemaining())
 {
 out.put(in.get());
 if (out.position() == 8 && out.get(0) == 2)
 {
 out.flip().position(2);
 out.compact();
 }
 }
 print(out);
 out.clear();
 print(out);
}

If you performs the method, you get the result

0 0
5 7 11 13 17 19 23 29 0 0

As the last for read and write I will mention the method compact(), which copies all elements
between the position and limit to start of the buffer. After that, the position is equal to
the limit – position, while the limit is equal to capacity. Consider the following method:

JAVA 5: FILES AND JAVA IO

94

JAVA.NIO

The method test07() now performs a reset() and the result of the indexes are

 - limit = 8

 - position = 2

 - mark = undefined

and the method print() will finally result in

5 7 11 13 17 19

As the last for read and write I will mention the method compact(), which copies all elements
between the position and limit to start of the buffer. After that, the position is equal to
the limit – position, while the limit is equal to capacity. Consider the following method:

private static void test08()
{
 IntBuffer in = IntBuffer.allocate(10);
 in.put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19).put(23).
 put(29).rewind();
 IntBuffer out = IntBuffer.allocate(10);
 while (in.hasRemaining())
 {
 out.put(in.get());
 if (out.position() == 8 && out.get(0) == 2)
 {
 out.flip().position(2);
 out.compact();
 }
 }
 print(out);
 out.clear();
 print(out);
}

If you performs the method, you get the result

0 0
5 7 11 13 17 19 23 29 0 0

If you performs the method, you get the result

JAVA 5: FILES AND JAVA IO

94

JAVA.NIO

The method test07() now performs a reset() and the result of the indexes are

 - limit = 8

 - position = 2

 - mark = undefined

and the method print() will finally result in

5 7 11 13 17 19

As the last for read and write I will mention the method compact(), which copies all elements
between the position and limit to start of the buffer. After that, the position is equal to
the limit – position, while the limit is equal to capacity. Consider the following method:

private static void test08()
{
 IntBuffer in = IntBuffer.allocate(10);
 in.put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19).put(23).
 put(29).rewind();
 IntBuffer out = IntBuffer.allocate(10);
 while (in.hasRemaining())
 {
 out.put(in.get());
 if (out.position() == 8 && out.get(0) == 2)
 {
 out.flip().position(2);
 out.compact();
 }
 }
 print(out);
 out.clear();
 print(out);
}

If you performs the method, you get the result

0 0
5 7 11 13 17 19 23 29 0 0

JAVA 5: FILES AND JAVA IO

95

java.nIo

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

JAVA 5: FILES AND JAVA IO

95

JAVA.NIO

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

 - limit = 10

 - position = 8

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

 - limit = 8

 - position = 2

At that time, the content of the buffer is

2 3 5 7 11 13 17 19

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

5 7 11 13 17 19 17 19

and the indices which now applies

 - limit = 10

 - position = 8 – 2 = 6

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

 - limit = 10

 - position = 8

The first print() outside the loop therefore prints:

0 0

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

JAVA 5: FILES AND JAVA IO

95

JAVA.NIO

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

 - limit = 10

 - position = 8

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

 - limit = 8

 - position = 2

At that time, the content of the buffer is

2 3 5 7 11 13 17 19

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

5 7 11 13 17 19 17 19

and the indices which now applies

 - limit = 10

 - position = 8 – 2 = 6

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

 - limit = 10

 - position = 8

The first print() outside the loop therefore prints:

0 0

At that time, the content of the buffer is

JAVA 5: FILES AND JAVA IO

95

JAVA.NIO

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

 - limit = 10

 - position = 8

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

 - limit = 8

 - position = 2

At that time, the content of the buffer is

2 3 5 7 11 13 17 19

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

5 7 11 13 17 19 17 19

and the indices which now applies

 - limit = 10

 - position = 8 – 2 = 6

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

 - limit = 10

 - position = 8

The first print() outside the loop therefore prints:

0 0

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

JAVA 5: FILES AND JAVA IO

95

JAVA.NIO

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

 - limit = 10

 - position = 8

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

 - limit = 8

 - position = 2

At that time, the content of the buffer is

2 3 5 7 11 13 17 19

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

5 7 11 13 17 19 17 19

and the indices which now applies

 - limit = 10

 - position = 8 – 2 = 6

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

 - limit = 10

 - position = 8

The first print() outside the loop therefore prints:

0 0

and the indices which now applies

JAVA 5: FILES AND JAVA IO

95

JAVA.NIO

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

 - limit = 10

 - position = 8

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

 - limit = 8

 - position = 2

At that time, the content of the buffer is

2 3 5 7 11 13 17 19

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

5 7 11 13 17 19 17 19

and the indices which now applies

 - limit = 10

 - position = 8 – 2 = 6

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

 - limit = 10

 - position = 8

The first print() outside the loop therefore prints:

0 0

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

JAVA 5: FILES AND JAVA IO

95

JAVA.NIO

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

 - limit = 10

 - position = 8

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

 - limit = 8

 - position = 2

At that time, the content of the buffer is

2 3 5 7 11 13 17 19

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

5 7 11 13 17 19 17 19

and the indices which now applies

 - limit = 10

 - position = 8 – 2 = 6

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

 - limit = 10

 - position = 8

The first print() outside the loop therefore prints:

0 0

The first print() outside the loop therefore prints:

JAVA 5: FILES AND JAVA IO

95

JAVA.NIO

which is not clear. The method starts by creating an IntBuffer in with room for 10 elements,
after which the buffer is filled with 10 numbers. After the buffer is filled is the position
is equal to 10, and therefore the initialization is finishes with a rewind(), which sets the
position to 0. The next step is to create another IntBuffer out with room for 10 numbers.
The following while loop drains the buffer in and fill the elements of the buffer out. When
position in out is 8 (and the first element of the buffer is not 2), the following is the case
concerning the indices:

 - limit = 10

 - position = 8

Once the position has been reached 8 the method performs a flip(), followed by a position(2),
and the indices are

 - limit = 8

 - position = 2

At that time, the content of the buffer is

2 3 5 7 11 13 17 19

and then there is performed a compact() to copy the elements from the index 2 through 7
to the start of the buffer:

5 7 11 13 17 19 17 19

and the indices which now applies

 - limit = 10

 - position = 8 – 2 = 6

The while loop adds two more elmenter to out (the numbers 23 and 29), which is on the
places with index 6 and 7 and for the indices apply

 - limit = 10

 - position = 8

The first print() outside the loop therefore prints:

0 0

JAVA 5: FILES AND JAVA IO

96

java.nIo

96

Before the last print() is performed, a clear() is executed that sets the position to 0 and the
limit to capacity, and the result is therefore

JAVA 5: FILES AND JAVA IO

96

JAVA.NIO

96

Before the last print() is performed, a clear() is executed that sets the position to 0 and the
limit to capacity, and the result is therefore

5 7 11 13 17 19 23 29 0 0

LAST REMARKS ABOUT BUFFERS

It is possible to compare two buffers with equals(), and the protocol is as follows:

Two buffers are equals() if and only if they have the same element type, they have the same
number of remaining elements, and the two sequences of remaining elements, considered
independently of their starting positions, are individually equal.

As an example, the following method prints true:

private static void test09()
{
 IntBuffer buff1 = IntBuffer.allocate(10);
 buff1.put(0). put(1).put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19);
 buff1.position(2);
 buff1.limit(6);

LAST REMARKS ABOUT BUFFERS

It is possible to compare two buffers with equals(), and the protocol is as follows:

Two buffers are equals() if and only if they have the same element type, they have the same
number of remaining elements, and the two sequences of remaining elements, considered
independently of their starting positions, are individually equal.

As an example, the following method prints true:

JAVA 5: FILES AND JAVA IO

96

JAVA.NIO

96

Before the last print() is performed, a clear() is executed that sets the position to 0 and the
limit to capacity, and the result is therefore

5 7 11 13 17 19 23 29 0 0

LAST REMARKS ABOUT BUFFERS

It is possible to compare two buffers with equals(), and the protocol is as follows:

Two buffers are equals() if and only if they have the same element type, they have the same
number of remaining elements, and the two sequences of remaining elements, considered
independently of their starting positions, are individually equal.

As an example, the following method prints true:

private static void test09()
{
 IntBuffer buff1 = IntBuffer.allocate(10);
 buff1.put(0). put(1).put(2).put(3).put(5).put(7).put(11).put(13).put(17).put(19);
 buff1.position(2);
 buff1.limit(6);

http://s.bookboon.com/EOT

JAVA 5: FILES AND JAVA IO

97

java.nIo
JAVA 5: FILES AND JAVA IO

97

JAVA.NIO

 IntBuffer buff2 = IntBuffer.allocate(8);
 buff2.put(2).put(3).put(5).put(7);
 buff2.flip();
 System.out.println(buff1.equals(buff2));
}

First notice that the two buffers are of different lengths. buff1 has position 2 and limit 6
while buff2 have position 0 and limit 4, but it means that both buffers have four remaining
elements and these elements are equal in pairs.

The last observation relates to performance. Currently, a buffer is nothing but a memory
structure that encapsulates an array, and in relation to files is the meaning of course that
the IO system must copy data to and from the buffers. Somewhere it is not optimal, since
the operating system’s IO operations are using their own buffers that do not have anything
with Java to do, but buffers as described in this section are data structures for JVM, and
therefore it will be advantageous that they were the same buffers. It is, however, not quite
simple, in particular due to the Java’s buffers are not necessarily contiguous allocated, but
also because the garbage collector if necessary are moving them. In an attempt to solve
these problems, one can create a byte buffer as

ByteBuffer buffer = ByteBuffer.allocateDiect(99);

It is a buffer that is associated with the IO and files, and in some cases, results in an
improved in performance and defines a buffer without a backing array, but there must be
special reasons for using that kind of buffers, since the gain is typically small.

3.2 CHANNELS

Channels belongs to buffers to achieve high-performance I/O. A channel is an object that
represents an open connection to a hardware device as a file. Channels efficiently transfer
data between byte buffers and operating system-based I/O services, and often there exists a
one-to-one correspondence between a file descriptor and a channel. When you work with
channels in a file context, the channel will often be connected to an open file.

A channel is defined by an interface

java.nio.channels.Channel

First notice that the two buffers are of different lengths. buff1 has position 2 and limit 6
while buff2 have position 0 and limit 4, but it means that both buffers have four remaining
elements and these elements are equal in pairs.

The last observation relates to performance. Currently, a buffer is nothing but a memory
structure that encapsulates an array, and in relation to files is the meaning of course that
the IO system must copy data to and from the buffers. Somewhere it is not optimal, since
the operating system’s IO operations are using their own buffers that do not have anything
with Java to do, but buffers as described in this section are data structures for JVM, and
therefore it will be advantageous that they were the same buffers. It is, however, not quite
simple, in particular due to the Java’s buffers are not necessarily contiguous allocated, but
also because the garbage collector if necessary are moving them. In an attempt to solve
these problems, one can create a byte buffer as

JAVA 5: FILES AND JAVA IO

97

JAVA.NIO

 IntBuffer buff2 = IntBuffer.allocate(8);
 buff2.put(2).put(3).put(5).put(7);
 buff2.flip();
 System.out.println(buff1.equals(buff2));
}

First notice that the two buffers are of different lengths. buff1 has position 2 and limit 6
while buff2 have position 0 and limit 4, but it means that both buffers have four remaining
elements and these elements are equal in pairs.

The last observation relates to performance. Currently, a buffer is nothing but a memory
structure that encapsulates an array, and in relation to files is the meaning of course that
the IO system must copy data to and from the buffers. Somewhere it is not optimal, since
the operating system’s IO operations are using their own buffers that do not have anything
with Java to do, but buffers as described in this section are data structures for JVM, and
therefore it will be advantageous that they were the same buffers. It is, however, not quite
simple, in particular due to the Java’s buffers are not necessarily contiguous allocated, but
also because the garbage collector if necessary are moving them. In an attempt to solve
these problems, one can create a byte buffer as

ByteBuffer buffer = ByteBuffer.allocateDiect(99);

It is a buffer that is associated with the IO and files, and in some cases, results in an
improved in performance and defines a buffer without a backing array, but there must be
special reasons for using that kind of buffers, since the gain is typically small.

3.2 CHANNELS

Channels belongs to buffers to achieve high-performance I/O. A channel is an object that
represents an open connection to a hardware device as a file. Channels efficiently transfer
data between byte buffers and operating system-based I/O services, and often there exists a
one-to-one correspondence between a file descriptor and a channel. When you work with
channels in a file context, the channel will often be connected to an open file.

A channel is defined by an interface

java.nio.channels.Channel

It is a buffer that is associated with the IO and files, and in some cases, results in an
improved in performance and defines a buffer without a backing array, but there must be
special reasons for using that kind of buffers, since the gain is typically small.

3.2 CHANNELS

Channels belongs to buffers to achieve high-performance I/O. A channel is an object that
represents an open connection to a hardware device as a file. Channels efficiently transfer
data between byte buffers and operating system-based I/O services, and often there exists a
one-to-one correspondence between a file descriptor and a channel. When you work with
channels in a file context, the channel will often be connected to an open file.

A channel is defined by an interface

JAVA 5: FILES AND JAVA IO

97

JAVA.NIO

 IntBuffer buff2 = IntBuffer.allocate(8);
 buff2.put(2).put(3).put(5).put(7);
 buff2.flip();
 System.out.println(buff1.equals(buff2));
}

First notice that the two buffers are of different lengths. buff1 has position 2 and limit 6
while buff2 have position 0 and limit 4, but it means that both buffers have four remaining
elements and these elements are equal in pairs.

The last observation relates to performance. Currently, a buffer is nothing but a memory
structure that encapsulates an array, and in relation to files is the meaning of course that
the IO system must copy data to and from the buffers. Somewhere it is not optimal, since
the operating system’s IO operations are using their own buffers that do not have anything
with Java to do, but buffers as described in this section are data structures for JVM, and
therefore it will be advantageous that they were the same buffers. It is, however, not quite
simple, in particular due to the Java’s buffers are not necessarily contiguous allocated, but
also because the garbage collector if necessary are moving them. In an attempt to solve
these problems, one can create a byte buffer as

ByteBuffer buffer = ByteBuffer.allocateDiect(99);

It is a buffer that is associated with the IO and files, and in some cases, results in an
improved in performance and defines a buffer without a backing array, but there must be
special reasons for using that kind of buffers, since the gain is typically small.

3.2 CHANNELS

Channels belongs to buffers to achieve high-performance I/O. A channel is an object that
represents an open connection to a hardware device as a file. Channels efficiently transfer
data between byte buffers and operating system-based I/O services, and often there exists a
one-to-one correspondence between a file descriptor and a channel. When you work with
channels in a file context, the channel will often be connected to an open file.

A channel is defined by an interface

java.nio.channels.Channel

JAVA 5: FILES AND JAVA IO

98

java.nIo

The interface only defines two methods close() and isOpen(), and the methods for IO are
defined in two subinterfaces

JAVA 5: FILES AND JAVA IO

98

JAVA.NIO

The interface only defines two methods close() and isOpen(), and the methods for IO are
defined in two subinterfaces

java.nio.channels.WritableByteChannel
java.nio.channels.ReadableByteChannel

there as the names says defines channels for writing or reading. A class that only implements
one of this interfaces is called unidirectional, and a class the implements both interfaces is
called bidirectional.

There are several ways to create a channel to a file and thus a Channel object. The class
Channels has two static methods:

WritableByteChannel writer = Channels.newChannel(OutputStream stream)
ReadableByteChannel reader = Channels.newChannel(InputStream stream)

Finally, several of the classes in the java.io are extended with a method getChannel(), which
returns a Channel.

I will now show an example that uses two Channel objects to copy a file. The example
assumes that my home directory has a subdirectory data with a file named municipalities,
which has a size of 2863 bytes (the text file with the names of Danish municipalities, but
is not important what the file contains, as long as it is found in the right directory and has
a size between 2 and 3 KB). Consider first the following method:

private static void copy1(ReadableByteChannel src, WritableByteChannel dst)
 throws IOException
{
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 while (src.read(buffer) != -1)
 {
 buffer.flip();
 dst.write(buffer);
 buffer.compact();
 }
 buffer.flip();
 dst.write(buffer);
}

there as the names says defines channels for writing or reading. A class that only implements
one of this interfaces is called unidirectional, and a class the implements both interfaces is
called bidirectional.

There are several ways to create a channel to a file and thus a Channel object. The class
Channels has two static methods:

JAVA 5: FILES AND JAVA IO

98

JAVA.NIO

The interface only defines two methods close() and isOpen(), and the methods for IO are
defined in two subinterfaces

java.nio.channels.WritableByteChannel
java.nio.channels.ReadableByteChannel

there as the names says defines channels for writing or reading. A class that only implements
one of this interfaces is called unidirectional, and a class the implements both interfaces is
called bidirectional.

There are several ways to create a channel to a file and thus a Channel object. The class
Channels has two static methods:

WritableByteChannel writer = Channels.newChannel(OutputStream stream)
ReadableByteChannel reader = Channels.newChannel(InputStream stream)

Finally, several of the classes in the java.io are extended with a method getChannel(), which
returns a Channel.

I will now show an example that uses two Channel objects to copy a file. The example
assumes that my home directory has a subdirectory data with a file named municipalities,
which has a size of 2863 bytes (the text file with the names of Danish municipalities, but
is not important what the file contains, as long as it is found in the right directory and has
a size between 2 and 3 KB). Consider first the following method:

private static void copy1(ReadableByteChannel src, WritableByteChannel dst)
 throws IOException
{
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 while (src.read(buffer) != -1)
 {
 buffer.flip();
 dst.write(buffer);
 buffer.compact();
 }
 buffer.flip();
 dst.write(buffer);
}

Finally, several of the classes in the java.io are extended with a method getChannel(), which
returns a Channel.

I will now show an example that uses two Channel objects to copy a file. The example
assumes that my home directory has a subdirectory data with a file named municipalities,
which has a size of 2863 bytes (the text file with the names of Danish municipalities, but
is not important what the file contains, as long as it is found in the right directory and has
a size between 2 and 3 KB). Consider first the following method:

JAVA 5: FILES AND JAVA IO

98

JAVA.NIO

The interface only defines two methods close() and isOpen(), and the methods for IO are
defined in two subinterfaces

java.nio.channels.WritableByteChannel
java.nio.channels.ReadableByteChannel

there as the names says defines channels for writing or reading. A class that only implements
one of this interfaces is called unidirectional, and a class the implements both interfaces is
called bidirectional.

There are several ways to create a channel to a file and thus a Channel object. The class
Channels has two static methods:

WritableByteChannel writer = Channels.newChannel(OutputStream stream)
ReadableByteChannel reader = Channels.newChannel(InputStream stream)

Finally, several of the classes in the java.io are extended with a method getChannel(), which
returns a Channel.

I will now show an example that uses two Channel objects to copy a file. The example
assumes that my home directory has a subdirectory data with a file named municipalities,
which has a size of 2863 bytes (the text file with the names of Danish municipalities, but
is not important what the file contains, as long as it is found in the right directory and has
a size between 2 and 3 KB). Consider first the following method:

private static void copy1(ReadableByteChannel src, WritableByteChannel dst)
 throws IOException
{
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 while (src.read(buffer) != -1)
 {
 buffer.flip();
 dst.write(buffer);
 buffer.compact();
 }
 buffer.flip();
 dst.write(buffer);
}

JAVA 5: FILES AND JAVA IO

99

java.nIo

99

The method has two parameters that are both unidirectional Channel objects, wherein the
first one is for reading and the second one is for writing. The method creates a buffer, and
the only thing you should notice is, that the size is smaller than the file. Next, the method
performs a loop that iterates so long as there is data on the input channel. Each iteration
performs a flip() of the buffer and then writing the buffer to the output channel as the
method write() drains the buffer. You must note that it is all bytes from the position 0 to the
limit and after the operation the position is equal to limit. Next, is performed a compact()
statement, which copies depending bytes after the limit to the start of the buffer. This is to
ensure that the buffer does not contain data, which is not drained to the output channel.
After the loop stops – all data on the input channel is read – the method performs again
a flip() and the buffer is drained to the output channel.

The following method creates an input channel to an InputStream and an output channel
to an OutputStream and use the above method to copy a file:

JAVA 5: FILES AND JAVA IO

99

JAVA.NIO

99

The method has two parameters that are both unidirectional Channel objects, wherein the
first one is for reading and the second one is for writing. The method creates a buffer, and
the only thing you should notice is, that the size is smaller than the file. Next, the method
performs a loop that iterates so long as there is data on the input channel. Each iteration
performs a flip() of the buffer and then writing the buffer to the output channel as the
method write() drains the buffer. You must note that it is all bytes from the position 0 to the
limit and after the operation the position is equal to limit. Next, is performed a compact()
statement, which copies depending bytes after the limit to the start of the buffer. This is to
ensure that the buffer does not contain data, which is not drained to the output channel.
After the loop stops – all data on the input channel is read – the method performs again
a flip() and the buffer is drained to the output channel.

The following method creates an input channel to an InputStream and an output channel
to an OutputStream and use the above method to copy a file:

private static void test10()
{
 ReadableByteChannel src = null;
 WritableByteChannel dst = null;
 try
 {

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 5: FILES AND JAVA IO

100

java.nIo
JAVA 5: FILES AND JAVA IO

100

JAVA.NIO

 src = Channels.newChannel(new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities"));
 dst = Channels.newChannel(new FileOutputStream("municipalities1"));
 copy1(src, dst);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 finally
 {
 try
 {
 if (src != null) src.close();
 if (dst != null) dst.close();
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 }
}

There is not much to explain, but you must note how to create the two Channel objects.

Below is another example on a method that copies a file by means of two Channel objects:

private static void copy2(ReadableByteChannel src, WritableByteChannel dst)
 throws IOException
{
 ByteBuffer buffer = ByteBuffer.allocate(4096);
 while (src.read(buffer) != -1);
 buffer.flip();
 dst.write(buffer);
}

The difference is that this time the entire input file is copied to the buffer before it is
drained to the output channel. This method is simpler than the previous one, but there is
an important condition, that the buffer has enough space to contain all the input file. The
test method is as follows

private static void test11()
{
 try (ReadableByteChannel src =
 Channels.newChannel(new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities"));

There is not much to explain, but you must note how to create the two Channel objects.

Below is another example on a method that copies a file by means of two Channel objects:

JAVA 5: FILES AND JAVA IO

100

JAVA.NIO

 src = Channels.newChannel(new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities"));
 dst = Channels.newChannel(new FileOutputStream("municipalities1"));
 copy1(src, dst);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 finally
 {
 try
 {
 if (src != null) src.close();
 if (dst != null) dst.close();
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 }
}

There is not much to explain, but you must note how to create the two Channel objects.

Below is another example on a method that copies a file by means of two Channel objects:

private static void copy2(ReadableByteChannel src, WritableByteChannel dst)
 throws IOException
{
 ByteBuffer buffer = ByteBuffer.allocate(4096);
 while (src.read(buffer) != -1);
 buffer.flip();
 dst.write(buffer);
}

The difference is that this time the entire input file is copied to the buffer before it is
drained to the output channel. This method is simpler than the previous one, but there is
an important condition, that the buffer has enough space to contain all the input file. The
test method is as follows

private static void test11()
{
 try (ReadableByteChannel src =
 Channels.newChannel(new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities"));

The difference is that this time the entire input file is copied to the buffer before it is
drained to the output channel. This method is simpler than the previous one, but there is
an important condition, that the buffer has enough space to contain all the input file. The
test method is as follows

JAVA 5: FILES AND JAVA IO

100

JAVA.NIO

 src = Channels.newChannel(new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities"));
 dst = Channels.newChannel(new FileOutputStream("municipalities1"));
 copy1(src, dst);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 finally
 {
 try
 {
 if (src != null) src.close();
 if (dst != null) dst.close();
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 }
}

There is not much to explain, but you must note how to create the two Channel objects.

Below is another example on a method that copies a file by means of two Channel objects:

private static void copy2(ReadableByteChannel src, WritableByteChannel dst)
 throws IOException
{
 ByteBuffer buffer = ByteBuffer.allocate(4096);
 while (src.read(buffer) != -1);
 buffer.flip();
 dst.write(buffer);
}

The difference is that this time the entire input file is copied to the buffer before it is
drained to the output channel. This method is simpler than the previous one, but there is
an important condition, that the buffer has enough space to contain all the input file. The
test method is as follows

private static void test11()
{
 try (ReadableByteChannel src =
 Channels.newChannel(new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities"));

JAVA 5: FILES AND JAVA IO

101

java.nIo
JAVA 5: FILES AND JAVA IO

101

JAVA.NIO

 WritableByteChannel dst =
 Channels.newChannel(new FileOutputStream("municipalities2")))
 {
 copy2(src, dst);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

and here is the main difference, that the two Channel objects are created as part of the try
statement.

MULTIPLE BUFFERS

As shown in the above examples is a Channel a fundamental technique to stream data
between two end points, that for example can be files, and as an adapter between the
channel and the program there is a buffer. For many years one of the most important ways
to increase your computer’s performence has been parallelism, a technique that particular
operating system exploits and it also applies in connection with IO. Among other things
for this reason Channel objects supports the use of multiple buffers where an input channel
can fill several buffers, while an output channel can drain multiple buffers. The following
example will show the syntax:

public static void test12()
{
 try (
 ScatteringByteChannel src = (ScatteringByteChannel) Channels.newChannel(
 new FileInputStream(System.getProperty("user.home") + "/data/regions"));
 WritableByteChannel out = Channels.newChannel(System.out);
 GatheringByteChannel dst =
 (GatheringByteChannel) Channels.newChannel(new FileOutputStream("regions1")))
 {
 ByteBuffer[] buffers =
 { ByteBuffer.allocateDirect(100), ByteBuffer.allocateDirect(50) };
 src.read(buffers);
 for (int i = 0; i < buffers.length; ++i)
 {
 buffers[i].flip();
 out.write(buffers[i]);
 System.out.println("\n");
 buffers[i].rewind();
 }

and here is the main difference, that the two Channel objects are created as part of the try
statement.

MULTIPLE BUFFERS

As shown in the above examples is a Channel a fundamental technique to stream data
between two end points, that for example can be files, and as an adapter between the
channel and the program there is a buffer. For many years one of the most important ways
to increase your computer’s performence has been parallelism, a technique that particular
operating system exploits and it also applies in connection with IO. Among other things
for this reason Channel objects supports the use of multiple buffers where an input channel
can fill several buffers, while an output channel can drain multiple buffers. The following
example will show the syntax:

JAVA 5: FILES AND JAVA IO

101

JAVA.NIO

 WritableByteChannel dst =
 Channels.newChannel(new FileOutputStream("municipalities2")))
 {
 copy2(src, dst);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

and here is the main difference, that the two Channel objects are created as part of the try
statement.

MULTIPLE BUFFERS

As shown in the above examples is a Channel a fundamental technique to stream data
between two end points, that for example can be files, and as an adapter between the
channel and the program there is a buffer. For many years one of the most important ways
to increase your computer’s performence has been parallelism, a technique that particular
operating system exploits and it also applies in connection with IO. Among other things
for this reason Channel objects supports the use of multiple buffers where an input channel
can fill several buffers, while an output channel can drain multiple buffers. The following
example will show the syntax:

public static void test12()
{
 try (
 ScatteringByteChannel src = (ScatteringByteChannel) Channels.newChannel(
 new FileInputStream(System.getProperty("user.home") + "/data/regions"));
 WritableByteChannel out = Channels.newChannel(System.out);
 GatheringByteChannel dst =
 (GatheringByteChannel) Channels.newChannel(new FileOutputStream("regions1")))
 {
 ByteBuffer[] buffers =
 { ByteBuffer.allocateDirect(100), ByteBuffer.allocateDirect(50) };
 src.read(buffers);
 for (int i = 0; i < buffers.length; ++i)
 {
 buffers[i].flip();
 out.write(buffers[i]);
 System.out.println("\n");
 buffers[i].rewind();
 }

JAVA 5: FILES AND JAVA IO

102

java.nIo

102

JAVA 5: FILES AND JAVA IO

102

JAVA.NIO

102

 dst.write(buffers);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

After try are created three channels. An input channel, that uses multiple buffers, and is
called a scattering channel. It is created as other input channels, and therefore it is necessary
with a typecast. This time, the channel is connected to the file regions – for the simple
reason that the file size is small. The second channel is a usual output channel, which is
connected to System.out, while the third is also an output channel connected to a file in
the current directory.

The first statement in the try block creates an array with two ByteBuffer objects. This time
I have used allocateDirect(), which is in principle the most effective buffer for files, but the
important thing is that neither of the buffers can store the entire file regions. Note that the
two buffers are not of the same size, what is not needed. The next statement performs a
read on the input channel, wherein the array of buffers are a parameter. The read() method
will read the input channel and fill the content into the two buffers.

After try are created three channels. An input channel, that uses multiple buffers, and is
called a scattering channel. It is created as other input channels, and therefore it is necessary
with a typecast. This time, the channel is connected to the file regions – for the simple
reason that the file size is small. The second channel is a usual output channel, which is
connected to System.out, while the third is also an output channel connected to a file in
the current directory.

The first statement in the try block creates an array with two ByteBuffer objects. This time
I have used allocateDirect(), which is in principle the most effective buffer for files, but the
important thing is that neither of the buffers can store the entire file regions. Note that the
two buffers are not of the same size, what is not needed. The next statement performs a
read on the input channel, wherein the array of buffers are a parameter. The read() method
will read the input channel and fill the content into the two buffers.

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 5: FILES AND JAVA IO

103

java.nIo

The next for loop iterates to the two buffers, and for each iteration the buffer is fliped and
drained to standard output, and finally is perform a rewind() so that the buffer can be
drained again. After the loop the two buffers are drained to the output channel with the
method write(), which here drains both buffers. That a channel in this way drains more
buffers is called gathering. The output channel is created as another output channel, and it
is therefore necessary with a typecast when the channel is created.

If the method is performed, you get results:

JAVA 5: FILES AND JAVA IO

103

JAVA.NIO

The next for loop iterates to the two buffers, and for each iteration the buffer is fliped and
drained to standard output, and finally is perform a rewind() so that the buffer can be
drained again. After the loop the two buffers are drained to the output channel with the
method write(), which here drains both buffers. That a channel in this way drains more
buffers is called gathering. The output channel is created as another output channel, and it
is therefore necessary with a typecast when the channel is created.

If the method is performed, you get results:

1081, Region Nordjylland
1082, Region Midtjylland
1083, Region Syddanmark
1084, Region Hovedstade
n
1085, Region Sj� 	 lland

and you should notice how the first buffer is filled to its capacity, while the other only is
partially filled. You may also notice that there is a small encoding error (System.out), but if you
look at the file regions1 in the current directory, you will see that the file is copied correctly.

FILE CHANNELS

FileChannel is a class that represents a channel to files. A FileChannel is an abstract class,
but you can create an object by using the method getChannel(), which is supported by
several of the classes in java.io. As an example is below shown a method that copies the
file municipalities using FileChannel objects:

private static void test13()
{
 try (FileChannel src = (new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities")).getChannel();
 FileChannel dst = (new FileOutputStream("municipalities3")).getChannel())
 {
 copy2(src, dst);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

and you should notice how the first buffer is filled to its capacity, while the other only is
partially filled. You may also notice that there is a small encoding error (System.out), but if you
look at the file regions1 in the current directory, you will see that the file is copied correctly.

FILE CHANNELS

FileChannel is a class that represents a channel to files. A FileChannel is an abstract class,
but you can create an object by using the method getChannel(), which is supported by
several of the classes in java.io. As an example is below shown a method that copies the
file municipalities using FileChannel objects:

JAVA 5: FILES AND JAVA IO

103

JAVA.NIO

The next for loop iterates to the two buffers, and for each iteration the buffer is fliped and
drained to standard output, and finally is perform a rewind() so that the buffer can be
drained again. After the loop the two buffers are drained to the output channel with the
method write(), which here drains both buffers. That a channel in this way drains more
buffers is called gathering. The output channel is created as another output channel, and it
is therefore necessary with a typecast when the channel is created.

If the method is performed, you get results:

1081, Region Nordjylland
1082, Region Midtjylland
1083, Region Syddanmark
1084, Region Hovedstade
n
1085, Region Sj� 	 lland

and you should notice how the first buffer is filled to its capacity, while the other only is
partially filled. You may also notice that there is a small encoding error (System.out), but if you
look at the file regions1 in the current directory, you will see that the file is copied correctly.

FILE CHANNELS

FileChannel is a class that represents a channel to files. A FileChannel is an abstract class,
but you can create an object by using the method getChannel(), which is supported by
several of the classes in java.io. As an example is below shown a method that copies the
file municipalities using FileChannel objects:

private static void test13()
{
 try (FileChannel src = (new FileInputStream(
 System.getProperty("user.home") + "/data/municipalities")).getChannel();
 FileChannel dst = (new FileOutputStream("municipalities3")).getChannel())
 {
 copy2(src, dst);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

JAVA 5: FILES AND JAVA IO

104

java.nIo

The method is in principle the same as test11(), but the two Channel objects are created
in a different way. The class FileInputStream have a method getChannel(), which returns a
FileChannel. It is a read-only channel. Likewise, the class FileOutputStream has a method
getChannel(), which returns a file channel that is a writeonly channel.

Similarly, the class RandomAccessFile has a method getChannel(), which returns a FileChannel,
that is a readwrite channel. The class FileChannel has many methods, and I will mention
the most important:

 - void force(boolean meta) which enforces that all updates are written physically to
the file. The parameter specifies where the file’s metadata also should be written.

 - long position() that returns the position of the physical file pointer.
 - FileChannel position(long newPosition) that sets the position of the physical file

pointer. With that method you can define where to read or write in the file.
 - int read(ByteBuffer buffer) that reads bytes in the file and returns the number af bytes

as read. The maximum number of bytes is determined by the capacity of the buffer.
 - int read(ByteBuffer buffer, long position) which also reads bytes to buffer, but postion

tells where in the file to start (the postion of the file pointer).
 - long size() that returns the size of the file.
 - int write(ByteBuffer buffer) that writes the content of the buffer to the file starting

from the current position of the file pointer. The method returns the number og
bytes written to the file.

 - int write(ByteBuffer buffer, long position) which also writes bytes to the file, but
postion tells where in the file to start (the postion of the file pointer).

As an example, is shown a method that writes to and reads from a RandomAccessFile:

JAVA 5: FILES AND JAVA IO

104

JAVA.NIO

The method is in principle the same as test11(), but the two Channel objects are created
in a different way. The class FileInputStream have a method getChannel(), which returns a
FileChannel. It is a read-only channel. Likewise, the class FileOutputStream has a method
getChannel(), which returns a file channel that is a writeonly channel.

Similarly, the class RandomAccessFile has a method getChannel(), which returns a FileChannel,
that is a readwrite channel. The class FileChannel has many methods, and I will mention
the most important:

 - void force(boolean meta) which enforces that all updates are written physically to
the file. The parameter specifies where the file’s metadata also should be written.

 - long position() that returns the position of the physical file pointer.
 - FileChannel position(long newPosition) that sets the position of the physical file

pointer. With that method you can define where to read or write in the file.
 - int read(ByteBuffer buffer) that reads bytes in the file and returns the number af bytes

as read. The maximum number of bytes is determined by the capacity of the buffer.
 - int read(ByteBuffer buffer, long position) which also reads bytes to buffer, but postion

tells where in the file to start (the postion of the file pointer).
 - long size() that returns the size of the file.
 - int write(ByteBuffer buffer) that writes the content of the buffer to the file starting

from the current position of the file pointer. The method returns the number og
bytes written to the file.

 - int write(ByteBuffer buffer, long position) which also writes bytes to the file, but
postion tells where in the file to start (the postion of the file pointer).

As an example, is shown a method that writes to and reads from a RandomAccessFile:

public static void test14()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "rw")).getChannel())
 {
 System.out.println("Position = " + fc.position() + ", size = " + fc.size());
 ByteBuffer buffer = ByteBuffer.allocateDirect(2048);
 buffer.putInt(23);
 buffer.putDouble(Math.PI);
 buffer.putInt(29);
 buffer.putDouble(Math.E);
 buffer.flip();
 fc.write(buffer);
 fc.force(false);
 System.out.println("Position = " + fc.position() + ", size = " + fc.size());

JAVA 5: FILES AND JAVA IO

105

java.nIo

105

JAVA 5: FILES AND JAVA IO

105

JAVA.NIO

105

 buffer.clear();
 fc.position(0);
 fc.read(buffer);
 buffer.flip();
 System.out.println(buffer.getInt());
 System.out.println(buffer.getDouble());
 System.out.println(buffer.getInt());
 System.out.println(buffer.getDouble());
 }
 catch (Exception ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

http://s.bookboon.com/GTca

JAVA 5: FILES AND JAVA IO

106

java.nIo

First a FileChannel is opend to the file, and this time it’s a readwrite channel, and the first
thing that happens is that the method prints the position of the file pointer and file size.
Next, a ByteBuffer is created. I now want to write an int, a double, an int and another
double to this buffer. In order to format these values for bytes I exploit that a ByteBuffer
has methods for this purpose, which partly copies the values into the buffer and moves the
index position correctly. After the four values are written to the buffer a flip() is performed,
and the buffer’s contents are sent to the channel. Then empty the buffer and the file pointer
is set 0, and the contents of the file are read to the buffer. Finally, the result is printed,
and again are used the right get methods for reading from the buffer. If the method is
performed, the result is:

JAVA 5: FILES AND JAVA IO

106

JAVA.NIO

First a FileChannel is opend to the file, and this time it’s a readwrite channel, and the first
thing that happens is that the method prints the position of the file pointer and file size.
Next, a ByteBuffer is created. I now want to write an int, a double, an int and another
double to this buffer. In order to format these values for bytes I exploit that a ByteBuffer
has methods for this purpose, which partly copies the values into the buffer and moves the
index position correctly. After the four values are written to the buffer a flip() is performed,
and the buffer’s contents are sent to the channel. Then empty the buffer and the file pointer
is set 0, and the contents of the file are read to the buffer. Finally, the result is printed,
and again are used the right get methods for reading from the buffer. If the method is
performed, the result is:

Position = 0, size = 24
Position = 24, size = 24
23
3.141592653589793
29
2.718281828459045

MEMORY MAPPED FILES

A FileChannel has a method map() which makes it possible to embed an open file or a part
of an open file in a buffer:

MappedByteBuffer map(FileChannel.MapMode mode, long position, long size)

The three parameters denotes a mode in addition to the part of the file to be encapsulated
(start position and the length of the segment to be encapsulated). Mode may be READ_
ONLY or READ_WRITE. The type MappedByteBuffer has the same characteristics as other
buffers, but its content is stored in a file. This means for example, that if you performs a
get() and the file is updated by another program, so the changes are visible in the current
program. The same applies to put() that if you update the buffer, the change will be visible
in another programs that uses the same file. The goal of a memory mapped file is of course
performance, and especially when processing large files like pictures. As an example is shown
a method that creates a file with 1000 integers:

private static void test15()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "rw")).getChannel())
 {
 MappedByteBuffer buffer = fc.map(FileChannel.MapMode.READ_WRITE, 0, 4096);
 for (int i = 0; i < 1000; ++i) buffer.putInt(i + 1);
 }

MEMORY MAPPED FILES

A FileChannel has a method map() which makes it possible to embed an open file or a part
of an open file in a buffer:

MappedByteBuffer map(FileChannel.MapMode mode, long position, long size)

The three parameters denotes a mode in addition to the part of the file to be encapsulated
(start position and the length of the segment to be encapsulated). Mode may be READ_
ONLY or READ_WRITE. The type MappedByteBuffer has the same characteristics as other
buffers, but its content is stored in a file. This means for example, that if you performs a
get() and the file is updated by another program, so the changes are visible in the current
program. The same applies to put() that if you update the buffer, the change will be visible
in another programs that uses the same file. The goal of a memory mapped file is of course
performance, and especially when processing large files like pictures. As an example is shown
a method that creates a file with 1000 integers:

JAVA 5: FILES AND JAVA IO

106

JAVA.NIO

First a FileChannel is opend to the file, and this time it’s a readwrite channel, and the first
thing that happens is that the method prints the position of the file pointer and file size.
Next, a ByteBuffer is created. I now want to write an int, a double, an int and another
double to this buffer. In order to format these values for bytes I exploit that a ByteBuffer
has methods for this purpose, which partly copies the values into the buffer and moves the
index position correctly. After the four values are written to the buffer a flip() is performed,
and the buffer’s contents are sent to the channel. Then empty the buffer and the file pointer
is set 0, and the contents of the file are read to the buffer. Finally, the result is printed,
and again are used the right get methods for reading from the buffer. If the method is
performed, the result is:

Position = 0, size = 24
Position = 24, size = 24
23
3.141592653589793
29
2.718281828459045

MEMORY MAPPED FILES

A FileChannel has a method map() which makes it possible to embed an open file or a part
of an open file in a buffer:

MappedByteBuffer map(FileChannel.MapMode mode, long position, long size)

The three parameters denotes a mode in addition to the part of the file to be encapsulated
(start position and the length of the segment to be encapsulated). Mode may be READ_
ONLY or READ_WRITE. The type MappedByteBuffer has the same characteristics as other
buffers, but its content is stored in a file. This means for example, that if you performs a
get() and the file is updated by another program, so the changes are visible in the current
program. The same applies to put() that if you update the buffer, the change will be visible
in another programs that uses the same file. The goal of a memory mapped file is of course
performance, and especially when processing large files like pictures. As an example is shown
a method that creates a file with 1000 integers:

private static void test15()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "rw")).getChannel())
 {
 MappedByteBuffer buffer = fc.map(FileChannel.MapMode.READ_WRITE, 0, 4096);
 for (int i = 0; i < 1000; ++i) buffer.putInt(i + 1);
 }

JAVA 5: FILES AND JAVA IO

107

java.nIo
JAVA 5: FILES AND JAVA IO

107

JAVA.NIO

 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

The file is a RandomAccessFile and as in the previous example is created a FileChannel to
the file. Next is created a MemoryMappedBuffer to the channel and the buffer says that
the file will be mapped from start to byte 4096. This number corresponds exactly to that
the file must contains 1000 integers of type int. The next loop fills the buffer with 1000
integers from 1 to 1000. You should note that the result of the buffer is written to the file
that will contain the 1000 integers. Note also that since it is a difference row, the sum of
the numbers are 500500.

The next method updates the file:

private static void test16()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "rw")).getChannel())
 {
 MappedByteBuffer buffer = fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());
 for (int i = 0; i < 1000; ++i) buffer.putInt(2 * buffer.getInt(i * 4));
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

Again is created a memory mapped file and all data in the file is updated by doubling. You
should notice how the individual numbers are referenced:

buffer.getInt(i * 4)

returns an int, starting at the address 4*i, but without moving the buffer’s position.
The statement

buffer.putInt(2 * buffer.getInt(i * 4));

then updates the same int, and then move the position 4 bytes forward.

The file is a RandomAccessFile and as in the previous example is created a FileChannel to
the file. Next is created a MemoryMappedBuffer to the channel and the buffer says that
the file will be mapped from start to byte 4096. This number corresponds exactly to that
the file must contains 1000 integers of type int. The next loop fills the buffer with 1000
integers from 1 to 1000. You should note that the result of the buffer is written to the file
that will contain the 1000 integers. Note also that since it is a difference row, the sum of
the numbers are 500500.

The next method updates the file:

JAVA 5: FILES AND JAVA IO

107

JAVA.NIO

 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

The file is a RandomAccessFile and as in the previous example is created a FileChannel to
the file. Next is created a MemoryMappedBuffer to the channel and the buffer says that
the file will be mapped from start to byte 4096. This number corresponds exactly to that
the file must contains 1000 integers of type int. The next loop fills the buffer with 1000
integers from 1 to 1000. You should note that the result of the buffer is written to the file
that will contain the 1000 integers. Note also that since it is a difference row, the sum of
the numbers are 500500.

The next method updates the file:

private static void test16()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "rw")).getChannel())
 {
 MappedByteBuffer buffer = fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());
 for (int i = 0; i < 1000; ++i) buffer.putInt(2 * buffer.getInt(i * 4));
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

Again is created a memory mapped file and all data in the file is updated by doubling. You
should notice how the individual numbers are referenced:

buffer.getInt(i * 4)

returns an int, starting at the address 4*i, but without moving the buffer’s position.
The statement

buffer.putInt(2 * buffer.getInt(i * 4));

then updates the same int, and then move the position 4 bytes forward.

Again is created a memory mapped file and all data in the file is updated by doubling. You
should notice how the individual numbers are referenced:

JAVA 5: FILES AND JAVA IO

107

JAVA.NIO

 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

The file is a RandomAccessFile and as in the previous example is created a FileChannel to
the file. Next is created a MemoryMappedBuffer to the channel and the buffer says that
the file will be mapped from start to byte 4096. This number corresponds exactly to that
the file must contains 1000 integers of type int. The next loop fills the buffer with 1000
integers from 1 to 1000. You should note that the result of the buffer is written to the file
that will contain the 1000 integers. Note also that since it is a difference row, the sum of
the numbers are 500500.

The next method updates the file:

private static void test16()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "rw")).getChannel())
 {
 MappedByteBuffer buffer = fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());
 for (int i = 0; i < 1000; ++i) buffer.putInt(2 * buffer.getInt(i * 4));
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

Again is created a memory mapped file and all data in the file is updated by doubling. You
should notice how the individual numbers are referenced:

buffer.getInt(i * 4)

returns an int, starting at the address 4*i, but without moving the buffer’s position.
The statement

buffer.putInt(2 * buffer.getInt(i * 4));

then updates the same int, and then move the position 4 bytes forward.

returns an int, starting at the address 4*i, but without moving the buffer’s position.
The statement

JAVA 5: FILES AND JAVA IO

107

JAVA.NIO

 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

The file is a RandomAccessFile and as in the previous example is created a FileChannel to
the file. Next is created a MemoryMappedBuffer to the channel and the buffer says that
the file will be mapped from start to byte 4096. This number corresponds exactly to that
the file must contains 1000 integers of type int. The next loop fills the buffer with 1000
integers from 1 to 1000. You should note that the result of the buffer is written to the file
that will contain the 1000 integers. Note also that since it is a difference row, the sum of
the numbers are 500500.

The next method updates the file:

private static void test16()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "rw")).getChannel())
 {
 MappedByteBuffer buffer = fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());
 for (int i = 0; i < 1000; ++i) buffer.putInt(2 * buffer.getInt(i * 4));
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

Again is created a memory mapped file and all data in the file is updated by doubling. You
should notice how the individual numbers are referenced:

buffer.getInt(i * 4)

returns an int, starting at the address 4*i, but without moving the buffer’s position.
The statement

buffer.putInt(2 * buffer.getInt(i * 4));

then updates the same int, and then move the position 4 bytes forward.then updates the same int, and then move the position 4 bytes forward.

JAVA 5: FILES AND JAVA IO

108

java.nIo

108

Since all numbers are doubled, the sum of the numbers in the file then is 1001000. It is
validated by the following method:

JAVA 5: FILES AND JAVA IO

108

JAVA.NIO

108

Since all numbers are doubled, the sum of the numbers in the file then is 1001000. It is
validated by the following method:

private static void test17()
{
 try (FileChannel fc = (new RandomAccessFile("numbers", "r")).getChannel())
 {
 long sum = 0;
 MappedByteBuffer buffer = fc.map(FileChannel.MapMode.READ_ONLY, 0, fc.size());
 while (buffer.hasRemaining()) sum += buffer.getInt();
 System.out.println(sum);
 }
 catch (IOException ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
}

 .

http://s.bookboon.com/AlcatelLucent

JAVA 5: FILES AND JAVA IO

109

java.nIo

LOCKING FILES

As the last related to channels I will look at file locking. It is possible to put a lock on an
entire file or just on a part of a file, where the lock indicates, where in the file locking begins
of what area in the file to be locked. Locking occurs at process level (and not threads),
and I will in this context distinguish between a writer process (a process that writes to the
file) and a reader process (a process that simply reads from the file). There are two kinds of
locks. A writer process can set an exclusive lock on a part of a file, and it can do so if there
are no other processes that have put a lock that overlaps the part of the file to be locked.
An exclusive lock gives the writer process full control over the locked part of the file such
that it can both read and write. A reader process can put a shared lock on a part of the file,
and it can do so if not another process has put an exclusive lock that overlaps the part of
the file to be locked. This means that the several processes can set a shared lock for the
same part of a file, and thus that more processes can read the file.

A lock has the type FileLock and the FileChannel class has four methods to create a lock:

1. lock()
2. lock(long position, long size, boolean shared)
3. tryLock()
4. tryLock(long position, long size, boolean shared)

The first and the third creates an exclusive lock on the entire file, while the other two can
specify the part of the file to be locked and where the lock should be exclusive or shared.
The difference is further that the first two blocks, which is to say that if they are unable to
lock, they are set in a queue until they can get the lock, after which the process is running
automatically again when the lock is released. The last two methods are not blocking, but if
they can not create the lock, they will return null, and that is up to the program to decide
what is to happen next.

The class FileLock has a number of methods that can return the information on the lock
and its conditions, but most importantly is the method release() which is used to release
the lock. Universally, one uses the following pattern to lock a file:

JAVA 5: FILES AND JAVA IO

109

JAVA.NIO

LOCKING FILES

As the last related to channels I will look at file locking. It is possible to put a lock on an
entire file or just on a part of a file, where the lock indicates, where in the file locking begins
of what area in the file to be locked. Locking occurs at process level (and not threads),
and I will in this context distinguish between a writer process (a process that writes to the
file) and a reader process (a process that simply reads from the file). There are two kinds of
locks. A writer process can set an exclusive lock on a part of a file, and it can do so if there
are no other processes that have put a lock that overlaps the part of the file to be locked.
An exclusive lock gives the writer process full control over the locked part of the file such
that it can both read and write. A reader process can put a shared lock on a part of the file,
and it can do so if not another process has put an exclusive lock that overlaps the part of
the file to be locked. This means that the several processes can set a shared lock for the
same part of a file, and thus that more processes can read the file.

A lock has the type FileLock and the FileChannel class has four methods to create a lock:

1. lock()
2. lock(long position, long size, boolean shared)
3. tryLock()
4. tryLock(long position, long size, boolean shared)

The first and the third creates an exclusive lock on the entire file, while the other two can
specify the part of the file to be locked and where the lock should be exclusive or shared.
The difference is further that the first two blocks, which is to say that if they are unable to
lock, they are set in a queue until they can get the lock, after which the process is running
automatically again when the lock is released. The last two methods are not blocking, but if
they can not create the lock, they will return null, and that is up to the program to decide
what is to happen next.

The class FileLock has a number of methods that can return the information on the lock
and its conditions, but most importantly is the method release() which is used to release
the lock. Universally, one uses the following pattern to lock a file:

FileLock lock = fileChannel.lock();
try
{
 // interact with the file channel
}
catch (IOException ex)
{

JAVA 5: FILES AND JAVA IO

110

java.nIo
JAVA 5: FILES AND JAVA IO

110

JAVA.NIO

 // handle the exception
}
finally
{
 lock.release();
}

and here it is important that the method release() is performed in a finally block, so that
one is sure that it is executed.

To illustrate file locking in practice I have written following program Locking:

package locking;

import java.util.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class Locking
{
 private static final Random rand = new Random();
 private static final int N = 1000000;

 public static void main(String[] args)
 {
 boolean writer = args.length != 0;
 try (FileChannel fc =
 (new RandomAccessFile("integers", (writer) ? "rw" : "r").getChannel()))
 {
 if (writer) write(fc); else read(fc);
 }
 catch (Exception ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 }
 private static void read(FileChannel fc) throws Exception
 {
 for (int i = 0; i < N; i++)
 {
 System.out.println("Want a shared lock");
 long t1 = System.nanoTime();
 FileLock lock = fc.lock(0, 16, true);
 long t2 = System.nanoTime();

and here it is important that the method release() is performed in a finally block, so that
one is sure that it is executed.

To illustrate file locking in practice I have written following program Locking:

JAVA 5: FILES AND JAVA IO

110

JAVA.NIO

 // handle the exception
}
finally
{
 lock.release();
}

and here it is important that the method release() is performed in a finally block, so that
one is sure that it is executed.

To illustrate file locking in practice I have written following program Locking:

package locking;

import java.util.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class Locking
{
 private static final Random rand = new Random();
 private static final int N = 1000000;

 public static void main(String[] args)
 {
 boolean writer = args.length != 0;
 try (FileChannel fc =
 (new RandomAccessFile("integers", (writer) ? "rw" : "r").getChannel()))
 {
 if (writer) write(fc); else read(fc);
 }
 catch (Exception ex)
 {
 System.out.println("I/O error: " + ex.getMessage());
 }
 }
 private static void read(FileChannel fc) throws Exception
 {
 for (int i = 0; i < N; i++)
 {
 System.out.println("Want a shared lock");
 long t1 = System.nanoTime();
 FileLock lock = fc.lock(0, 16, true);
 long t2 = System.nanoTime();

JAVA 5: FILES AND JAVA IO

111

java.nIo

111

JAVA 5: FILES AND JAVA IO

111

JAVA.NIO

111

 System.out.println("Has a shared lock " + (t2 – t1));
 try
 {
 ByteBuffer buffer = ByteBuffer.allocate(16);
 fc.read(buffer, 0);
 buffer.flip();
 System.out.println("Sum = " +
 (buffer.getInt() + buffer.getInt() + buffer.getInt() + buffer.getInt()));
 }
 finally
 {
 lock.release();
 System.out.println("Shared lock released");
 }
 }
 }
 private static void write(FileChannel fc) throws Exception
 {
 for (int i = 0; i < N; i++)
 {
 System.out.println("Want an exclusive lock");
 long t1 = System.nanoTime();
 FileLock lock = fc.lock();
 long t2 = System.nanoTime();

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 5: FILES AND JAVA IO

112

java.nIo
JAVA 5: FILES AND JAVA IO

112

JAVA.NIO

 System.out.println("Has an exclusive lock: " + (t2 – t1));
 try
 {
 ByteBuffer buffer = ByteBuffer.allocate(16);
 int value = rand.nextInt(89997) + 10000;
 System.out.println("Writing: " + value);
 buffer.putInt(value).putInt(value + 1).putInt(value + 2).putInt(value + 3);
 buffer.flip();
 fc.write(buffer, 0);
 }
 finally
 {
 lock.release();
 System.out.println("Exclusive lock released");
 }
 }
 }
}

The program is implemented as a command that may have an argument on the command
line. The value does not matter, but in main(), a boolean writer is true or false depending
on whether there is an argument or not. In main() is created a RandomAccessFile that is
readwrite or readonly depending on the value of the variable writer, and the same variable
is used to determine whether to perform a method write() or a method read().

The method write() iterates a loop 1000000 times and for each iteration the method acquire
an exclusive lock for the file. When the file has been locked the method prints, how long it
has been waiting for the lock, and then writes 4 integers to file before releasing the lock again.

The method read() works in principle in the same way, just trying the method instead to
get a shared lock, and instead of writing to the file it reads the 4 integers and prints their
sum on the screen.

The idea is now to start two versions of the program, such they runs in each their terminal,
and where the one writes, while the other reads. You will then be able to observe how the two
programs alternately get a lock. It is important that the program that writes is started first.

3.3 PATH AND FILES

Paths represents the file system, and the class Path is playing the same role as the class File
in java.io, but Path represents a more general concept and provides many more services
available. In the following, a Path object refer a path to a file or a directory, but it does not
have to be an existing file or directory, and so a Path is just a name.

The program is implemented as a command that may have an argument on the command
line. The value does not matter, but in main(), a boolean writer is true or false depending
on whether there is an argument or not. In main() is created a RandomAccessFile that is
readwrite or readonly depending on the value of the variable writer, and the same variable
is used to determine whether to perform a method write() or a method read().

The method write() iterates a loop 1000000 times and for each iteration the method acquire
an exclusive lock for the file. When the file has been locked the method prints, how long it
has been waiting for the lock, and then writes 4 integers to file before releasing the lock again.

The method read() works in principle in the same way, just trying the method instead to
get a shared lock, and instead of writing to the file it reads the 4 integers and prints their
sum on the screen.

The idea is now to start two versions of the program, such they runs in each their terminal,
and where the one writes, while the other reads. You will then be able to observe how the two
programs alternately get a lock. It is important that the program that writes is started first.

3.3 PATH AND FILES

Paths represents the file system, and the class Path is playing the same role as the class File
in java.io, but Path represents a more general concept and provides many more services
available. In the following, a Path object refer a path to a file or a directory, but it does not
have to be an existing file or directory, and so a Path is just a name.

JAVA 5: FILES AND JAVA IO

113

java.nIo

Along with the class Path is also the class Files, and both classes are in the package java.
nio.file. The class Files is very comprehensive, but generally it contains what is needed to
manipulate the file system. The following are not be a complete documentation of these
classes, and you are encouraged partly to examine the package java.nio.file and what types
exist and specific the documentation for the class Files, so you have an idea of what this
class makes available.

In the rest of this section and thus the rest of this chapter, I will through some simple testing
methods show a little of what is possible and how to apply the two classes Path and Files.

THE CLASS PATH

A path is composed of a number of elements (file names) separated by a separator, which
is a character that in Linux is /, while under Windows it is \. The following method prints
information about a Path while also providing an introduction to some of the methods that
the class Path makes available:

JAVA 5: FILES AND JAVA IO

113

JAVA.NIO

Along with the class Path is also the class Files, and both classes are in the package java.
nio.file. The class Files is very comprehensive, but generally it contains what is needed to
manipulate the file system. The following are not be a complete documentation of these
classes, and you are encouraged partly to examine the package java.nio.file and what types
exist and specific the documentation for the class Files, so you have an idea of what this
class makes available.

In the rest of this section and thus the rest of this chapter, I will through some simple testing
methods show a little of what is possible and how to apply the two classes Path and Files.

THE CLASS PATH

A path is composed of a number of elements (file names) separated by a separator, which
is a character that in Linux is /, while under Windows it is \. The following method prints
information about a Path while also providing an introduction to some of the methods that
the class Path makes available:

private static void print(Path p)
{
 System.out.println(p); // the path
 System.out.println(p.getFileName()); // the last element in the path
 System.out.println(p.getName(0)); // the 0th element in the path
 System.out.println(p.getNameCount()); // number of elements in the path
 System.out.println(p.subpath(0,2)); // the two first elements in the path
 System.out.println(p.getParent()); // the parent directory
 System.out.println(p.getRoot()); // the root directory
 System.out.println(p.toUri()); // the part converted to an URL
 try
 {
 Path path = p.toRealPath();
 System.out.println(path);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 System.out.println(p.getFileSystem());
 System.out.print
ln("---");
}

JAVA 5: FILES AND JAVA IO

114

java.nIo

114

Below is a test method using the above method:

JAVA 5: FILES AND JAVA IO

114

JAVA.NIO

114

Below is a test method using the above method:

public static void test18()
{
 Path p1 = Paths.get("/home/pa/data");
 Path p2 = Paths.get("/home/pa/data/zipcodes");
 Path p3 = Paths.get("home", "pa", "data");
 Path p4 = Paths.get(FileSystems.getDefault().getSeparator(), "home", "pa",
 "data", "zipcodes");
 Path p5 = Paths.get(System.getProperty("user.home"));
 Path p6 = Paths.get("abc").toAbsolutePath();
 print(p1);
 print(p2);
 print(p3);
 print(p4);
 print(p5);
 print(p6);
}

http://s.bookboon.com/BI

JAVA 5: FILES AND JAVA IO

115

java.nIo

The class Paths is a class that include a static method get(), which you can use to create
a Path object. The first two statements are easy enough to understand and they creates
(on my machine) a path to, respectively, a directory and a file. The next two statements
does almost the same, but here you specify multiple arguments where the arguments are
the elements of the path and the method then inserts the necessary separation characters.
Actually it is recommend to use this syntax, as in this way makes the name regardless of
the current operating system. The first, however, will create a relative path, while the other
creates an absolute path, and the example should among other things show how to obtain
the file system separation character and thus the symbol for root. The last two examples
should show how to get a path to the home directory, and how to create an absolute path
for a name. If the first path is printed, the result is:

JAVA 5: FILES AND JAVA IO

115

JAVA.NIO

The class Paths is a class that include a static method get(), which you can use to create
a Path object. The first two statements are easy enough to understand and they creates
(on my machine) a path to, respectively, a directory and a file. The next two statements
does almost the same, but here you specify multiple arguments where the arguments are
the elements of the path and the method then inserts the necessary separation characters.
Actually it is recommend to use this syntax, as in this way makes the name regardless of
the current operating system. The first, however, will create a relative path, while the other
creates an absolute path, and the example should among other things show how to obtain
the file system separation character and thus the symbol for root. The last two examples
should show how to get a path to the home directory, and how to create an absolute path
for a name. If the first path is printed, the result is:

/home/pa/data
data
home
3
home/pa
/home/pa
/
file:///home/pa/data/
/home/pa/data
sun.nio.fs.LinuxFileSystem@4e25154f

If you look at the results, there is not so much wonder in that, but you should note how
there is created an URL for the name. The method performs the statement toRealPath(),
which creates a Path object to an existing directory or file. This statment is placed in a try /
catch, and if the file does not exist, you get an exeption. In this case, the file (the directory)
exists and the path is printed. Finally, the last line is included only to show how to refer
to the current file system.

The results corresponding to the variables p2, p3, p4 and p5 contains in principle nothing
new, but for the variable p3 is the result:

home/pa/data
data
home
3
home/pa
home/pa
null
file:///home/pa/doc/java/Java%205/source05/NIOProgram/home/pa/data
java.nio.file.NoSuchFileException: home/pa/data
sun.nio.fs.LinuxFileSystem@4e25154f

If you look at the results, there is not so much wonder in that, but you should note how
there is created an URL for the name. The method performs the statement toRealPath(),
which creates a Path object to an existing directory or file. This statment is placed in a try /
catch, and if the file does not exist, you get an exeption. In this case, the file (the directory)
exists and the path is printed. Finally, the last line is included only to show how to refer
to the current file system.

The results corresponding to the variables p2, p3, p4 and p5 contains in principle nothing
new, but for the variable p3 is the result:

JAVA 5: FILES AND JAVA IO

115

JAVA.NIO

The class Paths is a class that include a static method get(), which you can use to create
a Path object. The first two statements are easy enough to understand and they creates
(on my machine) a path to, respectively, a directory and a file. The next two statements
does almost the same, but here you specify multiple arguments where the arguments are
the elements of the path and the method then inserts the necessary separation characters.
Actually it is recommend to use this syntax, as in this way makes the name regardless of
the current operating system. The first, however, will create a relative path, while the other
creates an absolute path, and the example should among other things show how to obtain
the file system separation character and thus the symbol for root. The last two examples
should show how to get a path to the home directory, and how to create an absolute path
for a name. If the first path is printed, the result is:

/home/pa/data
data
home
3
home/pa
/home/pa
/
file:///home/pa/data/
/home/pa/data
sun.nio.fs.LinuxFileSystem@4e25154f

If you look at the results, there is not so much wonder in that, but you should note how
there is created an URL for the name. The method performs the statement toRealPath(),
which creates a Path object to an existing directory or file. This statment is placed in a try /
catch, and if the file does not exist, you get an exeption. In this case, the file (the directory)
exists and the path is printed. Finally, the last line is included only to show how to refer
to the current file system.

The results corresponding to the variables p2, p3, p4 and p5 contains in principle nothing
new, but for the variable p3 is the result:

home/pa/data
data
home
3
home/pa
home/pa
null
file:///home/pa/doc/java/Java%205/source05/NIOProgram/home/pa/data
java.nio.file.NoSuchFileException: home/pa/data
sun.nio.fs.LinuxFileSystem@4e25154f

JAVA 5: FILES AND JAVA IO

116

java.nIo

and here you must note that it is a relative file name, and that name’s URL as the name
of the current directory followed by the relative file name. You should also note that this
time there is an exception when performing toRealPath() when the directory does not exist.
Something similar is happened with p6:

JAVA 5: FILES AND JAVA IO

116

JAVA.NIO

and here you must note that it is a relative file name, and that name’s URL as the name
of the current directory followed by the relative file name. You should also note that this
time there is an exception when performing toRealPath() when the directory does not exist.
Something similar is happened with p6:

/home/pa/doc/java/Java 5/source05/NIOProgram/abc
abc
home
8
home/pa
/home/pa/doc/java/Java 5/source05/NIOProgram
/
file:///home/pa/doc/java/Java%205/source05/NIOProgram/abc
java.nio.file.NoSuchFileException:
 /home/pa/doc/java/Java 5/source05/NIOProgram/abc
sun.nio.fs.LinuxFileSystem@4e25154f

abc is the name of a nonexistent file, and the method toAbsolutPath() creates a path which
references to a file abc under current directory. The file is not existing, so you get back an
exception when performing toRealPath().

As another example the method below creates a Path object to a file named numbers and
under my tmp directory. Next, the method uses the class Files that have a static method
newOutputStream(), which creates an OutputStream to a file identified by a Path object. If the
file does not exist, it is created (if possible), and then there is written 100 bytes to the file:

private static void test19()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/numbers");
 try (OutputStream out = new BufferedOutputStream(Files.newOutputStream(path)))
 {
 for (byte b = 0; b < 100; ++b) out.write(b);
 } catch (IOException ex)
 {
 System.out.println(ex);
 }
}

abc is the name of a nonexistent file, and the method toAbsolutPath() creates a path which
references to a file abc under current directory. The file is not existing, so you get back an
exception when performing toRealPath().

As another example the method below creates a Path object to a file named numbers and
under my tmp directory. Next, the method uses the class Files that have a static method
newOutputStream(), which creates an OutputStream to a file identified by a Path object. If the
file does not exist, it is created (if possible), and then there is written 100 bytes to the file:

JAVA 5: FILES AND JAVA IO

116

JAVA.NIO

and here you must note that it is a relative file name, and that name’s URL as the name
of the current directory followed by the relative file name. You should also note that this
time there is an exception when performing toRealPath() when the directory does not exist.
Something similar is happened with p6:

/home/pa/doc/java/Java 5/source05/NIOProgram/abc
abc
home
8
home/pa
/home/pa/doc/java/Java 5/source05/NIOProgram
/
file:///home/pa/doc/java/Java%205/source05/NIOProgram/abc
java.nio.file.NoSuchFileException:
 /home/pa/doc/java/Java 5/source05/NIOProgram/abc
sun.nio.fs.LinuxFileSystem@4e25154f

abc is the name of a nonexistent file, and the method toAbsolutPath() creates a path which
references to a file abc under current directory. The file is not existing, so you get back an
exception when performing toRealPath().

As another example the method below creates a Path object to a file named numbers and
under my tmp directory. Next, the method uses the class Files that have a static method
newOutputStream(), which creates an OutputStream to a file identified by a Path object. If the
file does not exist, it is created (if possible), and then there is written 100 bytes to the file:

private static void test19()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/numbers");
 try (OutputStream out = new BufferedOutputStream(Files.newOutputStream(path)))
 {
 for (byte b = 0; b < 100; ++b) out.write(b);
 } catch (IOException ex)
 {
 System.out.println(ex);
 }
}

JAVA 5: FILES AND JAVA IO

117

java.nIo

117

THE CLASS FILES

The class Files is as mentioned, very comprehensive and has among other things a number
of static methods that can print information about a files attributes:

JAVA 5: FILES AND JAVA IO

117

JAVA.NIO

117

THE CLASS FILES

The class Files is as mentioned, very comprehensive and has among other things a number
of static methods that can print information about a files attributes:

private static void test20()
{
 info(Paths.get("/home/pa/tmp"));
 info(Paths.get("/home/pa/tmp/numbers"));
}

private static void info(Path path)
{
 System.out.println(Files.exists(path));
 System.out.println(Files.isDirectory(path));
 System.out.println(Files.isRegularFile(path));
 System.out.println(Files.isReadable(path));
 System.out.println(Files.isWritable(path));
 System.out.println(Files.isExecutable(path));
 System.out.println(Files.isSymbolicLink(path));
 System.out.print
ln("---");
}

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 5: FILES AND JAVA IO

118

java.nIo

where numbers are the file created above. The meaning of each method should follow from
the name, and is the method perform is the result:

JAVA 5: FILES AND JAVA IO

118

JAVA.NIO

where numbers are the file created above. The meaning of each method should follow from
the name, and is the method perform is the result:

true
true
false
true
true
true
false

true
false
true
true
true
false
false

Consider then the following method:

private static void test21()
{
 try
 {
 Path p0 = Paths.get(System.getProperty("user.home"));
 Path p1 = Files.createDirectory(p0.resolve("testdir"));
 Path p2 = Files.createFile(p1.resolve("testfile"));
 System.out.println(p0);
 System.out.println(p1);
 System.out.println(p2);
 Files.copy(p2, p1.resolve("testfile1"));
 System.out.println(Files.deleteIfExists(p1.resolve("testfile1")));
 System.out.println(Files.deleteIfExists(p2));
 System.out.println(Files.deleteIfExists(p1));
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method creates a path p0 to my home directory. With this path available means

p0.resolve("testdir")

Consider then the following method:

JAVA 5: FILES AND JAVA IO

118

JAVA.NIO

where numbers are the file created above. The meaning of each method should follow from
the name, and is the method perform is the result:

true
true
false
true
true
true
false

true
false
true
true
true
false
false

Consider then the following method:

private static void test21()
{
 try
 {
 Path p0 = Paths.get(System.getProperty("user.home"));
 Path p1 = Files.createDirectory(p0.resolve("testdir"));
 Path p2 = Files.createFile(p1.resolve("testfile"));
 System.out.println(p0);
 System.out.println(p1);
 System.out.println(p2);
 Files.copy(p2, p1.resolve("testfile1"));
 System.out.println(Files.deleteIfExists(p1.resolve("testfile1")));
 System.out.println(Files.deleteIfExists(p2));
 System.out.println(Files.deleteIfExists(p1));
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method creates a path p0 to my home directory. With this path available means

p0.resolve("testdir")

The method creates a path p0 to my home directory. With this path available means

JAVA 5: FILES AND JAVA IO

118

JAVA.NIO

where numbers are the file created above. The meaning of each method should follow from
the name, and is the method perform is the result:

true
true
false
true
true
true
false

true
false
true
true
true
false
false

Consider then the following method:

private static void test21()
{
 try
 {
 Path p0 = Paths.get(System.getProperty("user.home"));
 Path p1 = Files.createDirectory(p0.resolve("testdir"));
 Path p2 = Files.createFile(p1.resolve("testfile"));
 System.out.println(p0);
 System.out.println(p1);
 System.out.println(p2);
 Files.copy(p2, p1.resolve("testfile1"));
 System.out.println(Files.deleteIfExists(p1.resolve("testfile1")));
 System.out.println(Files.deleteIfExists(p2));
 System.out.println(Files.deleteIfExists(p1));
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

The method creates a path p0 to my home directory. With this path available means

p0.resolve("testdir")

JAVA 5: FILES AND JAVA IO

119

java.nIo

the creation of a path where the name testdir becomes a “file” under p0 – in this case a
subdirectory. Files has a static method createDirrectory(), which creates a directory from a
path and returns a Path object p1 to this directory. Likewise, p2 is a path to a file in this
directory. Files also has a method copy() to copy a file. In this case, the file that is copied
has the path p2 and is copied to a file in the same directory, but with the name testfile1.
The result of performing these statements is that in my home directory is created following
file tree:

The last three statements of the method deletes this file tree again, and is the method
executed, the result is:

JAVA 5: FILES AND JAVA IO

119

JAVA.NIO

the creation of a path where the name testdir becomes a “file” under p0 – in this case a
subdirectory. Files has a static method createDirrectory(), which creates a directory from a
path and returns a Path object p1 to this directory. Likewise, p2 is a path to a file in this
directory. Files also has a method copy() to copy a file. In this case, the file that is copied
has the path p2 and is copied to a file in the same directory, but with the name testfile1.
The result of performing these statements is that in my home directory is created following
file tree:

The last three statements of the method deletes this file tree again, and is the method
executed, the result is:

/home/pa
/home/pa/testdir
/home/pa/testdir/testfile
true
true
true

The following method shows how to create a path to a file in my tmp directory, and then
open an OutputStream with this path and prints 15 bytes to the stream:

private static void test22()
{
 byte[] b = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 };
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file1");
 try (OutputStream out = Files.newOutputStream(path, StandardOpenOption.CREATE))
 {
 out.write(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

There is not much to explain, but you should notice how you can set an option to
newOutputStream(). StandardOpenOption is an enumeration, and you are encouraged to
study the other options.

The following method shows how to create a path to a file in my tmp directory, and then
open an OutputStream with this path and prints 15 bytes to the stream:

JAVA 5: FILES AND JAVA IO

119

JAVA.NIO

the creation of a path where the name testdir becomes a “file” under p0 – in this case a
subdirectory. Files has a static method createDirrectory(), which creates a directory from a
path and returns a Path object p1 to this directory. Likewise, p2 is a path to a file in this
directory. Files also has a method copy() to copy a file. In this case, the file that is copied
has the path p2 and is copied to a file in the same directory, but with the name testfile1.
The result of performing these statements is that in my home directory is created following
file tree:

The last three statements of the method deletes this file tree again, and is the method
executed, the result is:

/home/pa
/home/pa/testdir
/home/pa/testdir/testfile
true
true
true

The following method shows how to create a path to a file in my tmp directory, and then
open an OutputStream with this path and prints 15 bytes to the stream:

private static void test22()
{
 byte[] b = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 };
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file1");
 try (OutputStream out = Files.newOutputStream(path, StandardOpenOption.CREATE))
 {
 out.write(b);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

There is not much to explain, but you should notice how you can set an option to
newOutputStream(). StandardOpenOption is an enumeration, and you are encouraged to
study the other options.

There is not much to explain, but you should notice how you can set an option to
newOutputStream(). StandardOpenOption is an enumeration, and you are encouraged to
study the other options.

JAVA 5: FILES AND JAVA IO

120

java.nIo

120

This same problem can also be solved as follows:

JAVA 5: FILES AND JAVA IO

120

JAVA.NIO

120

This same problem can also be solved as follows:

private static void test23()
{
 byte[] b = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 };
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file2");
 try
 {
 Files.write(path, b, StandardOpenOption.CREATE);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

where the method write() opens the file, writes a byte array to the file and close it again.
Below are two methods that read the two files again:

private static void test24()
{
 byte[] b = new byte[100];

where the method write() opens the file, writes a byte array to the file and close it again.
Below are two methods that read the two files again:

JAVA 5: FILES AND JAVA IO

120

JAVA.NIO

120

This same problem can also be solved as follows:

private static void test23()
{
 byte[] b = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 };
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file2");
 try
 {
 Files.write(path, b, StandardOpenOption.CREATE);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

where the method write() opens the file, writes a byte array to the file and close it again.
Below are two methods that read the two files again:

private static void test24()
{
 byte[] b = new byte[100];

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 5: FILES AND JAVA IO

121

java.nIo
JAVA 5: FILES AND JAVA IO

121

JAVA.NIO

 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file1");
 try (InputStream in = Files.newInputStream(path))
 {
 int count = in.read(b);
 for (int i = 0; i < count; ++i) System.out.print(b[i] + " ");
 System.out.println();
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

private static void test25()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file2");
 try
 {
 byte[] b = Files.readAllBytes(path);
 for (int i = 0; i < b.length; ++i) System.out.print(b[i] + " ");
 System.out.println();
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

The next method shows how you with a single statement can write a list of strings to a file:

private static void test26()
{
 List<String> lines = Arrays.asList("Gorm den Gamle", "Harald Blåtand",
 "Svend Tveskæg", "Harald d. 2.", "Knud den Store", "Hardeknud",
 "Magnus den Gode");
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file3");
 try
 {
 Files.write(path, lines, Charset.defaultCharset(), StandardOpenOption.CREATE);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

The next method shows how you with a single statement can write a list of strings to a file:

JAVA 5: FILES AND JAVA IO

121

JAVA.NIO

 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file1");
 try (InputStream in = Files.newInputStream(path))
 {
 int count = in.read(b);
 for (int i = 0; i < count; ++i) System.out.print(b[i] + " ");
 System.out.println();
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

private static void test25()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file2");
 try
 {
 byte[] b = Files.readAllBytes(path);
 for (int i = 0; i < b.length; ++i) System.out.print(b[i] + " ");
 System.out.println();
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

The next method shows how you with a single statement can write a list of strings to a file:

private static void test26()
{
 List<String> lines = Arrays.asList("Gorm den Gamle", "Harald Blåtand",
 "Svend Tveskæg", "Harald d. 2.", "Knud den Store", "Hardeknud",
 "Magnus den Gode");
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file3");
 try
 {
 Files.write(path, lines, Charset.defaultCharset(), StandardOpenOption.CREATE);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

JAVA 5: FILES AND JAVA IO

122

java.nIo

The method write(), this time has four parameters:

JAVA 5: FILES AND JAVA IO

122

JAVA.NIO

The method write(), this time has four parameters:

write(Path path, Iterable<? extends CharSequence> lines, Charset cs,
 OpenOption … options)

where the first is the path, the next a collection of objects derived from CharSequence (and,
in practice it is String), the third a character encoding and finally the possibility of multiple
options. It is very simple to create a text file.

Below is a method that reads the file again:

private static void test27()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file3");
 try
 {
 List<String> list = Files.readAllLines(path, Charset.defaultCharset());
 for (String line : list) System.out.println(line);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

Gorm den Gamle
Harald Blåtand
Svend Tveskæg
Harald d. 2.
Knud den Store
Hardeknud
Magnus den Gode

The following methods shows the same, but instead they uses respectively a BufferedWriter
and a BufferedReader, and also are shown how you can specify the encoding:

private static void test28()
{
 List<String> lines = Arrays.asList("Gorm den Gamle", "Harald Blåtand",
 "Svend Tveskæg", "Harald d. 2.", "Knud den Store", "Hardeknud",
 "Magnus den Gode");
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file4");
 try (BufferedWriter writer =
 Files.newBufferedWriter(path, Charset.availableCharsets().get("UTF-8")))
 {

where the first is the path, the next a collection of objects derived from CharSequence (and,
in practice it is String), the third a character encoding and finally the possibility of multiple
options. It is very simple to create a text file.

Below is a method that reads the file again:

JAVA 5: FILES AND JAVA IO

122

JAVA.NIO

The method write(), this time has four parameters:

write(Path path, Iterable<? extends CharSequence> lines, Charset cs,
 OpenOption … options)

where the first is the path, the next a collection of objects derived from CharSequence (and,
in practice it is String), the third a character encoding and finally the possibility of multiple
options. It is very simple to create a text file.

Below is a method that reads the file again:

private static void test27()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file3");
 try
 {
 List<String> list = Files.readAllLines(path, Charset.defaultCharset());
 for (String line : list) System.out.println(line);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

Gorm den Gamle
Harald Blåtand
Svend Tveskæg
Harald d. 2.
Knud den Store
Hardeknud
Magnus den Gode

The following methods shows the same, but instead they uses respectively a BufferedWriter
and a BufferedReader, and also are shown how you can specify the encoding:

private static void test28()
{
 List<String> lines = Arrays.asList("Gorm den Gamle", "Harald Blåtand",
 "Svend Tveskæg", "Harald d. 2.", "Knud den Store", "Hardeknud",
 "Magnus den Gode");
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file4");
 try (BufferedWriter writer =
 Files.newBufferedWriter(path, Charset.availableCharsets().get("UTF-8")))
 {

The following methods shows the same, but instead they uses respectively a BufferedWriter
and a BufferedReader, and also are shown how you can specify the encoding:

JAVA 5: FILES AND JAVA IO

122

JAVA.NIO

The method write(), this time has four parameters:

write(Path path, Iterable<? extends CharSequence> lines, Charset cs,
 OpenOption … options)

where the first is the path, the next a collection of objects derived from CharSequence (and,
in practice it is String), the third a character encoding and finally the possibility of multiple
options. It is very simple to create a text file.

Below is a method that reads the file again:

private static void test27()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file3");
 try
 {
 List<String> list = Files.readAllLines(path, Charset.defaultCharset());
 for (String line : list) System.out.println(line);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
}

Gorm den Gamle
Harald Blåtand
Svend Tveskæg
Harald d. 2.
Knud den Store
Hardeknud
Magnus den Gode

The following methods shows the same, but instead they uses respectively a BufferedWriter
and a BufferedReader, and also are shown how you can specify the encoding:

private static void test28()
{
 List<String> lines = Arrays.asList("Gorm den Gamle", "Harald Blåtand",
 "Svend Tveskæg", "Harald d. 2.", "Knud den Store", "Hardeknud",
 "Magnus den Gode");
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file4");
 try (BufferedWriter writer =
 Files.newBufferedWriter(path, Charset.availableCharsets().get("UTF-8")))
 {

JAVA 5: FILES AND JAVA IO

123

java.nIo

123

JAVA 5: FILES AND JAVA IO

123

JAVA.NIO

123

 for (String line : lines)
 {
 writer.write(line);
 writer.newLine();
 }
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

private static void test29()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file4");
 try (BufferedReader reader =
 Files.newBufferedReader(path, Charset.availableCharsets().get("UTF-8")))
 {
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);
 }
 catch (IOException ex)
 {

http://s.bookboon.com/Subscrybe

JAVA 5: FILES AND JAVA IO

124

java.nIo
JAVA 5: FILES AND JAVA IO

124

JAVA.NIO

 System.out.println(ex);
 }
}

The most important of these examples is how you with the class Files can create both a
BufferedWriter and a BufferedReader.

The next two examples are similar and shows how the class Files can create a BufferedOutputStream
and a BufferedInputStream:

private static void test30()
{
 byte data[] = new byte[100];
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file5");
 try (OutputStream out = new BufferedOutputStream(Files.newOutputStream(
 path, StandardOpenOption.CREATE, StandardOpenOption.APPEND)))
 {
 rand.nextBytes(data);
 for (int i = 0; i < 100; ++i) out.write(data);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

private static void test31()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file5");
 long sum = 0;
 try (InputStream in = new BufferedInputStream(Files.newInputStream(path)))
 {
 for (int t = in.read(); t != -1; t = in.read()) sum += t;
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 System.out.println(sum);
}

The first method writes 10000 bytes to a BufferedOutputStream, and here you should especially
note that it is opened in append mode. The method writes 100 times, and each time it
writes an array with 100 random bytes. The last method reads the file again by means of
a BufferedInputStream and determines the sum.

The most important of these examples is how you with the class Files can create both a
BufferedWriter and a BufferedReader.

The next two examples are similar and shows how the class Files can create a BufferedOutputStream
and a BufferedInputStream:

JAVA 5: FILES AND JAVA IO

124

JAVA.NIO

 System.out.println(ex);
 }
}

The most important of these examples is how you with the class Files can create both a
BufferedWriter and a BufferedReader.

The next two examples are similar and shows how the class Files can create a BufferedOutputStream
and a BufferedInputStream:

private static void test30()
{
 byte data[] = new byte[100];
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file5");
 try (OutputStream out = new BufferedOutputStream(Files.newOutputStream(
 path, StandardOpenOption.CREATE, StandardOpenOption.APPEND)))
 {
 rand.nextBytes(data);
 for (int i = 0; i < 100; ++i) out.write(data);
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

private static void test31()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file5");
 long sum = 0;
 try (InputStream in = new BufferedInputStream(Files.newInputStream(path)))
 {
 for (int t = in.read(); t != -1; t = in.read()) sum += t;
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
 System.out.println(sum);
}

The first method writes 10000 bytes to a BufferedOutputStream, and here you should especially
note that it is opened in append mode. The method writes 100 times, and each time it
writes an array with 100 random bytes. The last method reads the file again by means of
a BufferedInputStream and determines the sum.

The first method writes 10000 bytes to a BufferedOutputStream, and here you should especially
note that it is opened in append mode. The method writes 100 times, and each time it
writes an array with 100 random bytes. The last method reads the file again by means of
a BufferedInputStream and determines the sum.

JAVA 5: FILES AND JAVA IO

125

java.nIo

As the last example I will show how to write strings to a file, but this time by using a channel:

JAVA 5: FILES AND JAVA IO

125

JAVA.NIO

As the last example I will show how to write strings to a file, but this time by using a channel:

private static void test32()
{
 List<String> lines = Arrays.asList("Gorm den Gamle", "Harald Blåtand",
 "Svend Tveskæg", "Harald d. 2.", "Knud den Store", "Hardeknud",
 "Magnus den Gode");
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file6");
 try (ByteChannel channel = Files.newByteChannel(path,
 StandardOpenOption.CREATE, StandardOpenOption.WRITE))
 {
 for (String line : lines)
 {
 ByteBuffer buffer =
 ByteBuffer.wrap((line + ‘\n').getBytes(Charset.forName("UTF-8")));
 channel.write(buffer);
 }
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

First is created a list with the names of the same 7 Danish kings as used above and then a
path to a file in my tmp directory is created. The class Files has a method newByteChannel(),
which creates a ByteChannel for a file identified by a path. With this channel ready the
method performs a loop that iterates over all strings in the list. For each string (name) are
added a line break, and all are converted to a byte array after an UTF-8 encoding. This
array is finally encapsulated in a ByteBuffer that is send out on the channel.

Below is the equivalent method, which reads the file again:

private static void test33()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file6");
 try (ByteChannel channel = Files.newByteChannel(path, StandardOpenOption.READ))
 {
 ByteBuffer buffer = ByteBuffer.allocate(30);
 while (channel.read(buffer) > 0)
 {
 buffer.flip();
 System.out.print(Charset.forName("UTF-8").decode(buffer));
 buffer.clear();
 }

First is created a list with the names of the same 7 Danish kings as used above and then a
path to a file in my tmp directory is created. The class Files has a method newByteChannel(),
which creates a ByteChannel for a file identified by a path. With this channel ready the
method performs a loop that iterates over all strings in the list. For each string (name) are
added a line break, and all are converted to a byte array after an UTF-8 encoding. This
array is finally encapsulated in a ByteBuffer that is send out on the channel.

Below is the equivalent method, which reads the file again:

JAVA 5: FILES AND JAVA IO

125

JAVA.NIO

As the last example I will show how to write strings to a file, but this time by using a channel:

private static void test32()
{
 List<String> lines = Arrays.asList("Gorm den Gamle", "Harald Blåtand",
 "Svend Tveskæg", "Harald d. 2.", "Knud den Store", "Hardeknud",
 "Magnus den Gode");
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file6");
 try (ByteChannel channel = Files.newByteChannel(path,
 StandardOpenOption.CREATE, StandardOpenOption.WRITE))
 {
 for (String line : lines)
 {
 ByteBuffer buffer =
 ByteBuffer.wrap((line + ‘\n').getBytes(Charset.forName("UTF-8")));
 channel.write(buffer);
 }
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

First is created a list with the names of the same 7 Danish kings as used above and then a
path to a file in my tmp directory is created. The class Files has a method newByteChannel(),
which creates a ByteChannel for a file identified by a path. With this channel ready the
method performs a loop that iterates over all strings in the list. For each string (name) are
added a line break, and all are converted to a byte array after an UTF-8 encoding. This
array is finally encapsulated in a ByteBuffer that is send out on the channel.

Below is the equivalent method, which reads the file again:

private static void test33()
{
 Path path = Paths.get(System.getProperty("user.home")).resolve("tmp/file6");
 try (ByteChannel channel = Files.newByteChannel(path, StandardOpenOption.READ))
 {
 ByteBuffer buffer = ByteBuffer.allocate(30);
 while (channel.read(buffer) > 0)
 {
 buffer.flip();
 System.out.print(Charset.forName("UTF-8").decode(buffer));
 buffer.clear();
 }

JAVA 5: FILES AND JAVA IO

126

java.nIo

126

JAVA 5: FILES AND JAVA IO

126

JAVA.NIO

126

 System.out.println();
 }
 catch (IOException ex)
 {
 System.out.println(ex);
 }
}

There is again created a ByteChannel to the file, and then a ByteBuffer. The number 30 is
arbitrary, but is, however, selected so that the buffer is not large enough to contain the
longest name. More precisely, this means that the subsequent read on the channel reads
the 30 bytes at a time until there is fewer than 30 bytes. Every time the buffer is full, or
more exactly when the read() method is performed the program executes a flip() and the
byte content of the buffer is decoded to a String, which is printed on the screen.

There is again created a ByteChannel to the file, and then a ByteBuffer. The number 30 is
arbitrary, but is, however, selected so that the buffer is not large enough to contain the
longest name. More precisely, this means that the subsequent read on the channel reads
the 30 bytes at a time until there is fewer than 30 bytes. Every time the buffer is full, or
more exactly when the read() method is performed the program executes a flip() and the
byte content of the buffer is decoded to a String, which is printed on the screen.

http://s.bookboon.com/volvo

JAVA 5: FILES AND JAVA IO

127

operatIons on sImple data types

4 OPERATIONS ON SIMPLE
DATA TYPES

Any data element (simple variable or object) uses space in the machine’s memory, and when
the smallest addressable unit in the machine’s memory is a byte, uses all data elements
without exception a whole number of bytes. What it is depends on the element and is
determined by the element’s data type. A byte consists of 8 bits (that is 8 of the symbols 0
and 1), and thus you can consider a byte as a bit pattern consisting of 8 bits. Since a bit
can take on two values, a byte thus can represent different values. How these values are
interpreted depends entirely on the program and the data elements data types, and in some
contexts it will be as a number, while in other contexts would be a code for a character.

In this chapter I will in detail describe how the simple data types are represented in Java as
bit patterns and in this context also what operations are available to manipulate the individual
bits. The chapter assumes knowledge of the binary numbers, and also the hexadecimal
numbers, and so far you lack the knowledge referring to the book’s appendix.

4.1 THE INTEGERS

Java has as already described four types of integers: byte, short, int and long, and they differ
only with respect to what they fill in memory, which are respectively 1, 2, 4 or 8 bytes.
As an example an int uses 4 bytes, and is in memory allocated as 4 contiguous bytes. This
means that an int uses 32 bits and can therefore represent 4294967296 different integers
as there with 32 bits is 4294967296 different bit patterns (232). The 32 bits are interpreted
as a binary number, and where negative numbers are represented by their 2 complement.
This corresponds to, that an int represents the integers in the range [a, b] where

JAVA 5: FILES AND JAVA IO

127

OpErAtIONS ON SImpLE DAtA typES

4 OPERATIONS ON SIMPLE
DATA TYPES

Any data element (simple variable or object) uses space in the machine’s memory, and when
the smallest addressable unit in the machine’s memory is a byte, uses all data elements
without exception a whole number of bytes. What it is depends on the element and is
determined by the element’s data type. A byte consists of 8 bits (that is 8 of the symbols 0
and 1), and thus you can consider a byte as a bit pattern consisting of 8 bits. Since a bit
can take on two values, a byte thus can represent different values. How these values are
interpreted depends entirely on the program and the data elements data types, and in some
contexts it will be as a number, while in other contexts would be a code for a character.

In this chapter I will in detail describe how the simple data types are represented in Java as
bit patterns and in this context also what operations are available to manipulate the individual
bits. The chapter assumes knowledge of the binary numbers, and also the hexadecimal
numbers, and so far you lack the knowledge referring to the book’s appendix.

4.1 THE INTEGERS

Java has as already described four types of integers: byte, short, int and long, and they differ
only with respect to what they fill in memory, which are respectively 1, 2, 4 or 8 bytes.
As an example an int uses 4 bytes, and is in memory allocated as 4 contiguous bytes. This
means that an int uses 32 bits and can therefore represent 4294967296 different integers
as there with 32 bits is 4294967296 different bit patterns (232). The 32 bits are interpreted
as a binary number, and where negative numbers are represented by their 2 complement.
This corresponds to, that an int represents the integers in the range [a, b] where

a = -2147483648 (the binary number 10000000000000000000000000000000)
b = 2147483647 (the binary number 01111111111111111111111111111111)

Any integer type supports the binary operations:

 - | bitvis or
 - & bitvis and
 - ^ bitvis xor
 - ~ 1 complement or just complement
 - << left shift
 - >> arithmetic right shift
 - >>> right shift

Any integer type supports the binary operations:

 - | bitvis or
 - & bitvis and
 - ^ bitvis xor
 - ~ 1 complement or just complement
 - << left shift
 - >> arithmetic right shift
 - >>> right shift

JAVA 5: FILES AND JAVA IO

128

operatIons on sImple data types

The representation of integers is simple, and it is easy test the above in Java. The program
BinProgram contains the following method:

JAVA 5: FILES AND JAVA IO

128

OpErAtIONS ON SImpLE DAtA typES

The representation of integers is simple, and it is easy test the above in Java. The program
BinProgram contains the following method:

public static String toBin(int t)
{
 StringBuilder builder = new StringBuilder();
 for (int i = 0; i < 32; ++i, t <<= 1)
 builder.append((t & 0x80000000) == 0 ? ‘0' : ‘1');
 return builder.toString();
}

that converts an integer to a 32-bit string. Note that the class Integer has a method
toBinaryString(), which returns an int as a bit string, but the method does not preceds by
0s, so the above method. If you perform the following method

private static void test01()
{
 print(113);
 print(-113);
 print(0);
 print(-1);
 print(Integer.MAX_VALUE);
 print(Integer.MIN_VALUE);
}

private static void print(int t)
{
 System.out.println(toBin(t) + " = " + t);
}

you get the result

00000000000000000000000001110001 = 113
11111111111111111111111110001111 = -113
00000000000000000000000000000000 = 0
11111111111111111111111111111111 = -1
01111111111111111111111111111111 = 2147483647
10000000000000000000000000000000 = -2147483648

corresponding to what is said above. Likewise the method:

private static void test02()
{
 int a = 0xF0F0F0F0;
 int b = 0x3C3C3C3C;
 System.out.println(toBin(a));

that converts an integer to a 32-bit string. Note that the class Integer has a method
toBinaryString(), which returns an int as a bit string, but the method does not preceds by
0s, so the above method. If you perform the following method

JAVA 5: FILES AND JAVA IO

128

OpErAtIONS ON SImpLE DAtA typES

The representation of integers is simple, and it is easy test the above in Java. The program
BinProgram contains the following method:

public static String toBin(int t)
{
 StringBuilder builder = new StringBuilder();
 for (int i = 0; i < 32; ++i, t <<= 1)
 builder.append((t & 0x80000000) == 0 ? ‘0' : ‘1');
 return builder.toString();
}

that converts an integer to a 32-bit string. Note that the class Integer has a method
toBinaryString(), which returns an int as a bit string, but the method does not preceds by
0s, so the above method. If you perform the following method

private static void test01()
{
 print(113);
 print(-113);
 print(0);
 print(-1);
 print(Integer.MAX_VALUE);
 print(Integer.MIN_VALUE);
}

private static void print(int t)
{
 System.out.println(toBin(t) + " = " + t);
}

you get the result

00000000000000000000000001110001 = 113
11111111111111111111111110001111 = -113
00000000000000000000000000000000 = 0
11111111111111111111111111111111 = -1
01111111111111111111111111111111 = 2147483647
10000000000000000000000000000000 = -2147483648

corresponding to what is said above. Likewise the method:

private static void test02()
{
 int a = 0xF0F0F0F0;
 int b = 0x3C3C3C3C;
 System.out.println(toBin(a));

JAVA 5: FILES AND JAVA IO

129

operatIons on sImple data types

129

JAVA 5: FILES AND JAVA IO

129

OpErAtIONS ON SImpLE DAtA typES

129

 System.out.println(toBin(b));
 System.out.println(toBin(a | b));
 System.out.println(toBin(a & b));
 System.out.println(toBin(a ^ b));
 System.out.println(toBin(~a));
 System.out.println(toBin(a << 3));
 System.out.println(toBin(a >> 3));
 System.out.println(toBin(a >>> 3));
}

results in the following:

11110000111100001111000011110000
00111100001111000011110000111100
11111100111111001111110011111100
00110000001100000011000000110000
11001100110011001100110011001100
00001111000011110000111100001111
10000111100001111000011110000000
11111110000111100001111000011110
00011110000111100001111000011110

results in the following:

JAVA 5: FILES AND JAVA IO

129

OpErAtIONS ON SImpLE DAtA typES

129

 System.out.println(toBin(b));
 System.out.println(toBin(a | b));
 System.out.println(toBin(a & b));
 System.out.println(toBin(a ^ b));
 System.out.println(toBin(~a));
 System.out.println(toBin(a << 3));
 System.out.println(toBin(a >> 3));
 System.out.println(toBin(a >>> 3));
}

results in the following:

11110000111100001111000011110000
00111100001111000011110000111100
11111100111111001111110011111100
00110000001100000011000000110000
11001100110011001100110011001100
00001111000011110000111100001111
10000111100001111000011110000000
11111110000111100001111000011110
00011110000111100001111000011110

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 5: FILES AND JAVA IO

130

operatIons on sImple data types

Here you should specifically note that the two variables a and b are initialized using
hexadecimal values that are useful when working with binary integers. Note also that the
operator >> is an arithmetic right shift (is the sign bit which is added), but the >>> operator
is a right shift, that always inserts a 0.

As for the other types to integers it is only the ranges, that the types represents that are
different, and therefore how big numbers to work with. However, the binary operations
sometimes give a different result than expected. If an argument is a byte or short, the argument
will be converted to an int before the operation is performed and the result will be a 32 bit
int. If the argument represents a negative number it may result in a different outcome than
expected. Something similar may happen if an argument is a long as the second argument
then must be converted to a long before the operation is performed. Consider as an example
the following method:

JAVA 5: FILES AND JAVA IO

130

OpErAtIONS ON SImpLE DAtA typES

Here you should specifically note that the two variables a and b are initialized using
hexadecimal values that are useful when working with binary integers. Note also that the
operator >> is an arithmetic right shift (is the sign bit which is added), but the >>> operator
is a right shift, that always inserts a 0.

As for the other types to integers it is only the ranges, that the types represents that are
different, and therefore how big numbers to work with. However, the binary operations
sometimes give a different result than expected. If an argument is a byte or short, the argument
will be converted to an int before the operation is performed and the result will be a 32 bit
int. If the argument represents a negative number it may result in a different outcome than
expected. Something similar may happen if an argument is a long as the second argument
then must be converted to a long before the operation is performed. Consider as an example
the following method:

private static void test03()
{
 byte b = -56;
 byte b1 = (byte)(b >> 3);
 byte b2 = (byte)(b >>> 3);
 byte b3 = (byte)((b & 0xff) >>> 3);
 System.out.println(toBin(b));
 System.out.println(toBin(b1));
 System.out.println(toBin(b2));
 System.out.println(toBin(b3));
}

If the method is performed, you get the result:

11111111111111111111111111001000
11111111111111111111111111111001
11111111111111111111111111111001
00000000000000000000000000011001

The value of b is 11001000, and when it is transferred to tobin(), it will be expanded
to 32 bits and are filled with the sign. The first result is as expected. This also applies to
the second result when it is an arithmetic shift, but you should note that the operation
is performed by first expanding b to 32 bits and then performs an arithmetic shift. The
third result is however not what one would expect, since it is a non arithmetic shift, but
the following occur:

If the method is performed, you get the result:

JAVA 5: FILES AND JAVA IO

130

OpErAtIONS ON SImpLE DAtA typES

Here you should specifically note that the two variables a and b are initialized using
hexadecimal values that are useful when working with binary integers. Note also that the
operator >> is an arithmetic right shift (is the sign bit which is added), but the >>> operator
is a right shift, that always inserts a 0.

As for the other types to integers it is only the ranges, that the types represents that are
different, and therefore how big numbers to work with. However, the binary operations
sometimes give a different result than expected. If an argument is a byte or short, the argument
will be converted to an int before the operation is performed and the result will be a 32 bit
int. If the argument represents a negative number it may result in a different outcome than
expected. Something similar may happen if an argument is a long as the second argument
then must be converted to a long before the operation is performed. Consider as an example
the following method:

private static void test03()
{
 byte b = -56;
 byte b1 = (byte)(b >> 3);
 byte b2 = (byte)(b >>> 3);
 byte b3 = (byte)((b & 0xff) >>> 3);
 System.out.println(toBin(b));
 System.out.println(toBin(b1));
 System.out.println(toBin(b2));
 System.out.println(toBin(b3));
}

If the method is performed, you get the result:

11111111111111111111111111001000
11111111111111111111111111111001
11111111111111111111111111111001
00000000000000000000000000011001

The value of b is 11001000, and when it is transferred to tobin(), it will be expanded
to 32 bits and are filled with the sign. The first result is as expected. This also applies to
the second result when it is an arithmetic shift, but you should note that the operation
is performed by first expanding b to 32 bits and then performs an arithmetic shift. The
third result is however not what one would expect, since it is a non arithmetic shift, but
the following occur:

The value of b is 11001000, and when it is transferred to tobin(), it will be expanded
to 32 bits and are filled with the sign. The first result is as expected. This also applies to
the second result when it is an arithmetic shift, but you should note that the operation
is performed by first expanding b to 32 bits and then performs an arithmetic shift. The
third result is however not what one would expect, since it is a non arithmetic shift, but
the following occur:

JAVA 5: FILES AND JAVA IO

131

operatIons on sImple data types

b is expanded to 32 bits: 11111111111111111111111111001000
a right shift on 3 bits: 00011111111111111111111111111001
a type cast to a byte: 11111001
expanded to 32 bits with a call to toBin(): 11111111111111111111111111111001

The problem can be solved by expanded b to 32 bits:

JAVA 5: FILES AND JAVA IO

131

OpErAtIONS ON SImpLE DAtA typES

b is expanded to 32 bits: 11111111111111111111111111001000
a right shift on 3 bits: 00011111111111111111111111111001
a type cast to a byte: 11111001
expanded to 32 bits with a call to toBin(): 11111111111111111111111111111001

The problem can be solved by expanded b to 32 bits:

b && 0xff =
11111111111111111111111111001000 & 00000000000000000000000011111111 =
00000000000000000000000011001000

EXERCISE 6

Add a class named Binary to the class library PaLib when the class must be part of the
package palib.util. The class must have the following methods:

package palib.util;

public class Binary
{
 /**
 * Converts the argument to a binary string of 8 bits.
 * @param b The byte to be converted
 * @return The argument converted to a binary string of 8 bits
 */
 public static String toBin(byte b) { … }

 /**
 * Converts the argument to a binary string of 16 bits.
 * @param t The integer to be converted
 * @return The argument converted to a binary string of 16 bits
 */
 public static String toBin(short t) { … }

 /**
 * Converts the argument to a binary string of 32 bits.
 * @param t The integer to be converted
 * @return The argument converted to a binary string of 32 bits
 */
 public static String toBin(int t) { … }

EXERCISE 6

Add a class named Binary to the class library PaLib when the class must be part of the
package palib.util. The class must have the following methods:

JAVA 5: FILES AND JAVA IO

131

OpErAtIONS ON SImpLE DAtA typES

b is expanded to 32 bits: 11111111111111111111111111001000
a right shift on 3 bits: 00011111111111111111111111111001
a type cast to a byte: 11111001
expanded to 32 bits with a call to toBin(): 11111111111111111111111111111001

The problem can be solved by expanded b to 32 bits:

b && 0xff =
11111111111111111111111111001000 & 00000000000000000000000011111111 =
00000000000000000000000011001000

EXERCISE 6

Add a class named Binary to the class library PaLib when the class must be part of the
package palib.util. The class must have the following methods:

package palib.util;

public class Binary
{
 /**
 * Converts the argument to a binary string of 8 bits.
 * @param b The byte to be converted
 * @return The argument converted to a binary string of 8 bits
 */
 public static String toBin(byte b) { … }

 /**
 * Converts the argument to a binary string of 16 bits.
 * @param t The integer to be converted
 * @return The argument converted to a binary string of 16 bits
 */
 public static String toBin(short t) { … }

 /**
 * Converts the argument to a binary string of 32 bits.
 * @param t The integer to be converted
 * @return The argument converted to a binary string of 32 bits
 */
 public static String toBin(int t) { … }

JAVA 5: FILES AND JAVA IO

132

operatIons on sImple data types

132

JAVA 5: FILES AND JAVA IO

132

OpErAtIONS ON SImpLE DAtA typES

132

 /**
 * Converts the argument to a binary string of 64 bits.
 * @param t The integer to be converted
 * @return The argument converted to a binary string of 64 bits
 */
 public static String toBin(long t) { … }

 /**
 * Converts the argument to a binary string of 16 bits.
 * @param t The integer to be converted
 * @param c Seperation character between byte values
 * @return The argument converted to a binary string of 16 bits
 */
 public static String toBin(short t, char c) { … }

 /**
 * Converts the argument to a binary string of 32 bits.
 * @param t The integer to be converted
 * @param c Seperation character between byte values
 * @return The argument converted to a binary string of 32 bits
 */
 public static String toBin(int t, char c) { … }

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 5: FILES AND JAVA IO

133

operatIons on sImple data types
JAVA 5: FILES AND JAVA IO

133

OpErAtIONS ON SImpLE DAtA typES

 /**
 * Converts the argument to a binary string of 64 bits.
 * @param t The integer to be converted
 * @param c Seperation character between byte values
 * @return The argument converted to a binary string of 64 bits
 */
 public static String toBin(long t, char c) { … }
}

Also, write a program that can test the methods in the new class.

Java supports as mentioned above, the binary operations, including in particular the left
and right shift. As other binary operations are rotations. If, for example

b = 11001000

is

b = 00110010

a binary right rotation on 2, while

b = 00100011

is a binary left rotation on 2. You must now expand the class Binary with the following
methods:

/**
 * Rotates the argument b n bits to the right.
 * @param b The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the right
 */
public static byte ror(byte b, int n) { … }

/**
 * Rotates the argument t n bits to the right.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument t rotated n bits to the right
 */
public static short ror(short t, int n) { … }

Also, write a program that can test the methods in the new class.

Java supports as mentioned above, the binary operations, including in particular the left
and right shift. As other binary operations are rotations. If, for example

b = 11001000

is

JAVA 5: FILES AND JAVA IO

133

OpErAtIONS ON SImpLE DAtA typES

 /**
 * Converts the argument to a binary string of 64 bits.
 * @param t The integer to be converted
 * @param c Seperation character between byte values
 * @return The argument converted to a binary string of 64 bits
 */
 public static String toBin(long t, char c) { … }
}

Also, write a program that can test the methods in the new class.

Java supports as mentioned above, the binary operations, including in particular the left
and right shift. As other binary operations are rotations. If, for example

b = 11001000

is

b = 00110010

a binary right rotation on 2, while

b = 00100011

is a binary left rotation on 2. You must now expand the class Binary with the following
methods:

/**
 * Rotates the argument b n bits to the right.
 * @param b The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the right
 */
public static byte ror(byte b, int n) { … }

/**
 * Rotates the argument t n bits to the right.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument t rotated n bits to the right
 */
public static short ror(short t, int n) { … }

a binary right rotation on 2, while

JAVA 5: FILES AND JAVA IO

133

OpErAtIONS ON SImpLE DAtA typES

 /**
 * Converts the argument to a binary string of 64 bits.
 * @param t The integer to be converted
 * @param c Seperation character between byte values
 * @return The argument converted to a binary string of 64 bits
 */
 public static String toBin(long t, char c) { … }
}

Also, write a program that can test the methods in the new class.

Java supports as mentioned above, the binary operations, including in particular the left
and right shift. As other binary operations are rotations. If, for example

b = 11001000

is

b = 00110010

a binary right rotation on 2, while

b = 00100011

is a binary left rotation on 2. You must now expand the class Binary with the following
methods:

/**
 * Rotates the argument b n bits to the right.
 * @param b The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the right
 */
public static byte ror(byte b, int n) { … }

/**
 * Rotates the argument t n bits to the right.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument t rotated n bits to the right
 */
public static short ror(short t, int n) { … }

is a binary left rotation on 2. You must now expand the class Binary with the following
methods:

JAVA 5: FILES AND JAVA IO

133

OpErAtIONS ON SImpLE DAtA typES

 /**
 * Converts the argument to a binary string of 64 bits.
 * @param t The integer to be converted
 * @param c Seperation character between byte values
 * @return The argument converted to a binary string of 64 bits
 */
 public static String toBin(long t, char c) { … }
}

Also, write a program that can test the methods in the new class.

Java supports as mentioned above, the binary operations, including in particular the left
and right shift. As other binary operations are rotations. If, for example

b = 11001000

is

b = 00110010

a binary right rotation on 2, while

b = 00100011

is a binary left rotation on 2. You must now expand the class Binary with the following
methods:

/**
 * Rotates the argument b n bits to the right.
 * @param b The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the right
 */
public static byte ror(byte b, int n) { … }

/**
 * Rotates the argument t n bits to the right.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument t rotated n bits to the right
 */
public static short ror(short t, int n) { … }

JAVA 5: FILES AND JAVA IO

134

operatIons on sImple data types
JAVA 5: FILES AND JAVA IO

134

OpErAtIONS ON SImpLE DAtA typES

/**
 * Rotates the argument t n bits to the right.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument t rotated n bits to the right
 */
public static int ror(int t, int n) { … }

/**
 * Rotates the argument t n bits to the right.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument t rotated n bits to the right
 */
public static long ror(long t, int n) { … }

/**
 * Rotates the argument b n bits to the left.
 * @param b The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the left
 */
public static byte rol(byte b, int n) { … }

/**
 * Rotates the argument b n bits to the left.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the left
 */
public static short rol(short t, int n) { … }

/**
 * Rotates the argument b n bits to the left.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the left
 */
public static int rol(int t, int n) { … }

/**
 * Rotates the argument b n bits to the left.
 * @param t The argument to be rotated
 * @param n The number of bits to be rotated
 * @return The argument b rotated n bits to the left
 */
public static long rol(long t, int n) { … }

You also you need to expand the test program to test the methods for binary rotation.You also you need to expand the test program to test the methods for binary rotation.

JAVA 5: FILES AND JAVA IO

135

operatIons on sImple data types

135

EXERCISE 7

Java defines a class called BitSet and which, in principle, represents a set, but as a so-called
bitmap, which can be thought of as an array consisting of elements of the type bits, and thus
elements that are 0, or 1. You must in this exercise write a program named BitmapProgram
that has three test methods for the class BitSet.

The first method must create a BitSet and tests the methods size(), cardinality(), set() and
toString().

Add a method

JAVA 5: FILES AND JAVA IO

135

OpErAtIONS ON SImpLE DAtA typES

135

EXERCISE 7

Java defines a class called BitSet and which, in principle, represents a set, but as a so-called
bitmap, which can be thought of as an array consisting of elements of the type bits, and thus
elements that are 0, or 1. You must in this exercise write a program named BitmapProgram
that has three test methods for the class BitSet.

The first method must create a BitSet and tests the methods size(), cardinality(), set() and
toString().

Add a method

static String toBin(BitSet s)
{
}

that returns a bit string for the BitSet s.that returns a bit string for the BitSet s.

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 5: FILES AND JAVA IO

136

operatIons on sImple data types

You must then write a second test method, when the method must create a BitSet with
the values 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29, and then the method must print the
corresponding bit string by means of the above toBin() method.

Write finally a test method that creates two BitSet objects initialized with appropriate values.
The test method should then try the BitSet class’s and(), notAnd(), or() and xor() methods.

PROBLEM 3

A BitSet is an example of a bitmap, and in this problem you should write a class Bitmap
that represents a bitmap and is an alternative to the Java’s BitSet. A bitmap is, in principle,
a sequence of bits:

JAVA 5: FILES AND JAVA IO

136

OpErAtIONS ON SImpLE DAtA typES

You must then write a second test method, when the method must create a BitSet with
the values 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29, and then the method must print the
corresponding bit string by means of the above toBin() method.

Write finally a test method that creates two BitSet objects initialized with appropriate values.
The test method should then try the BitSet class’s and(), notAnd(), or() and xor() methods.

PROBLEM 3

A BitSet is an example of a bitmap, and in this problem you should write a class Bitmap
that represents a bitmap and is an alternative to the Java’s BitSet. A bitmap is, in principle,
a sequence of bits:

0010111010101010101011110101010100111111101010101011111000100001

where there is 64 bits. Such a bitmap can, for example be implemented as eight bytes, 2
ints or a long. A bitmap must, however, be more general and should be able to be of any
size, and therefore it should be implemented as an array of one of the simple types to
integers. Immediately it is simple to implement a bitmap, but there are several things you
must consider and make a decision. As important examples I will mention:

 - which type to be used to the internal array for the individual bits
 - must the bitmap have fixed size
 - which sizes should be possible for a bitmap and should it be a multiplum of the

size of the array’s elements
 - which operations must a bitmap make available
 - when are two bitmaps compatible

As regards of the first, you can choose between byte, short, int and long. In the case of a
large bitmap, you should select a type with many bits as it means a smaller array, and thus
shorter loops in the methods, providing increased efficiency. In the case of small bitmaps,
a 64 bits element can means unnecessary space consumption, but in most practical cases
where you need a bitmap, it will be bitmaps with many bits, and it indicates to choose a
type with room for many bits. Below you should select the type long.

As for the size, it is the application that determines what is the best choice. In this task,
the size must be fixed, where you have to specify the size as a parameter to the constructor.
It must be able to have any logical size – for example 70 bits. If it is implemented as an
array of the type long it will occupies 128 bits, but there should only be access (reference)
to the first 70.

where there is 64 bits. Such a bitmap can, for example be implemented as eight bytes, 2
ints or a long. A bitmap must, however, be more general and should be able to be of any
size, and therefore it should be implemented as an array of one of the simple types to
integers. Immediately it is simple to implement a bitmap, but there are several things you
must consider and make a decision. As important examples I will mention:

 - which type to be used to the internal array for the individual bits
 - must the bitmap have fixed size
 - which sizes should be possible for a bitmap and should it be a multiplum of the

size of the array’s elements
 - which operations must a bitmap make available
 - when are two bitmaps compatible

As regards of the first, you can choose between byte, short, int and long. In the case of a
large bitmap, you should select a type with many bits as it means a smaller array, and thus
shorter loops in the methods, providing increased efficiency. In the case of small bitmaps,
a 64 bits element can means unnecessary space consumption, but in most practical cases
where you need a bitmap, it will be bitmaps with many bits, and it indicates to choose a
type with room for many bits. Below you should select the type long.

As for the size, it is the application that determines what is the best choice. In this task,
the size must be fixed, where you have to specify the size as a parameter to the constructor.
It must be able to have any logical size – for example 70 bits. If it is implemented as an
array of the type long it will occupies 128 bits, but there should only be access (reference)
to the first 70.

JAVA 5: FILES AND JAVA IO

137

operatIons on sImple data types

Based on the above, it is your task to expand the class library PaLib with the following class:

JAVA 5: FILES AND JAVA IO

137

OpErAtIONS ON SImpLE DAtA typES

Based on the above, it is your task to expand the class library PaLib with the following class:

package palib.util;

import java.util.*;

/**
 * Implements a bitmap consisting of an arbitrary number of bits.
 * The number of bits (size) is fixed and defined when creating an object.
 * Two bitmaps are compatible only if they consist of the same number of bits.
 */
public class Bitmap implements Comparable<Bitmap>

{
 /**
 * Creates a bitmap of size bits. All bits is 0.
 * @param size The size of the bitmap
 */
 public Bitmap(int size) { … }

 /**
 * Creates a bitmap initialized with a BitSet. The size is determined by the
 * logic value of s, and the individual bits are initialized corresponding to
 * the elements of s.
 * @param s The BitSet, to initialize this bitmap
 */
 public Bitmap(BitSet s) { … }

 /**
 * Creates a bitmap, which is initialized with a byte array.
 * @param arr The array used to initialize this bitmap
 */
 public Bitmap(byte[] arr) { … }

 /**
 * Copy constructor.
 * @param bm The bitmap, that must be copied
 */
 public Bitmap(Bitmap bm) { … }

 /**
 * Returns the size of this bitmap
 * @return The size of this bitmap
 */
 public int getSize() { … }

JAVA 5: FILES AND JAVA IO

138

operatIons on sImple data types

138

JAVA 5: FILES AND JAVA IO

138

OpErAtIONS ON SImpLE DAtA typES

138

 /**
 * Returns where the n'th bit is 1.
 * @param n Index of the bit to be tested
 * @return true, if the n'th bit is 1
 */
 public boolean get(int n) { … }

 /**
 * Sets the n'th bit in the bitmap to 1 or 0. Sets the n'th bit to 1 if the value
 * is true and 0 otherwise.
 * @param n Index of the bit to be set
 * @param value true means 1 and false 0
 */
 public void set(int n, boolean value) { … }

 /**
 * Sets all bits to 0.
 */
 public void clear() { … }

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 5: FILES AND JAVA IO

139

operatIons on sImple data types
JAVA 5: FILES AND JAVA IO

139

OpErAtIONS ON SImpLE DAtA typES

 /**
 * Swap all bits in this bitmap.
 * @return A reference to the current bitmap
 */
 public Bitmap flip() { … }

 /**
 * Performs an AND between the bitmap and the parameter.
 * The result is that the state of this bitmap is changed.
 * @param bm The bitmap that this bitmap are AND'ed with
 * @return A reference to the current bitmap
 * @throws UtilException If the two bitmaps are different lengths
 */
 public Bitmap and(Bitmap bm) throws UtilException { … }

 /**
 * Performs an OR between the bitmap and the parameter.
 * The result is that the state of this bitmap is changed.
 * @param bm The bitmap that this bitmap are OR'ed with
 * @return A reference to the current bitmap
 * @throws UtilException If the two bitmaps are different lengths
 */
 public Bitmap or(Bitmap bm) throws UtilException { … }

 /**
 * Performs an XOR between the bitmap and the parameter.
 * The result is that the state of this bitmap is changed.
 * @param bm The bitmap that this bitmap are XOR'ed with
 * @return A reference to the current bitmap
 * @throws UtilException If the two bitmaps are different lengths
 */
 public Bitmap xor(Bitmap bm) throws UtilException { … }

 /**
 * Performs a left shift on the current bitmap on n bits
 * @param n The number of bits to shift
 * @return A reference to the current bitmap
 */
 public Bitmap shl(int n) { … }

 /**
 * Performs a right shift on the current bitmap on n bits.
 * It is a non-arithmetic shift.
 * @param n The number of bits to shift
 * @return A reference to the current bitmap
 */
 public Bitmap shr(int n) { … }

JAVA 5: FILES AND JAVA IO

140

operatIons on sImple data types
JAVA 5: FILES AND JAVA IO

140

OpErAtIONS ON SImpLE DAtA typES

 /**
 * Performing a comparison of the current bitmap by parameter bm. The first bit,
 * where the two bitmaps are different, determines the order, so that 1
 * is considered high.
 * @param bm The bitmap to be compared with
 * @return 1 if the current bitmap is the largest, -1 if it is less than,
 * and 0 if there are the same
 */
 @Override
 public int compareTo(Bitmap bm) { … }

 /**
 * Overriding toString() so that it returns a string of the bits in the bitmap
 * @return A bit string representing the bits in the bitmap
 */
 @Override
 public String toString() { … }

 /**
 * Overloading of equals().
 * @param obj The object to be compared with
 * @return true, if the current bitmap is the same value as the obj interpreted
 * as a bitmap
 */
 @Override
 public boolean equals(Object obj) { … }

 /**
 * Overriding hash code, which is done by performers an xor of this bitmaps 32
 * bit words.
 * @return A hash code for this bitmap
 */
 @Override
 public int hashCode() { … }

 /**
 * Returns the value of this bitmap as a BitSet.
 * @return The value of this bitmap as a BitSet.
 */
 public BitSet toBitSet() { … }
 /**

 * Returns this bitmap as a byte array. If the length of the bitmap do not
 * specify an exact number of bytes the last byte id filled with 0 bits.
 * @return This bitmap as a byte array
 */
 public byte[] toBytes() { … }

JAVA 5: FILES AND JAVA IO

141

operatIons on sImple data types

141

JAVA 5: FILES AND JAVA IO

141

OpErAtIONS ON SImpLE DAtA typES

141

 /**
 * Static method returns a bitmap, which is a copy of the parameter bm, but with
 * all the bits inverted.
 * @param bm The bitmap to be returned a flip of
 * @return A flip of the parameter bm
 */
 public static Bitmap flip(Bitmap bm) { … }

 /**
 * Static method returns a bitmap, that is an AND of the bm1 and bm2.
 * @param bm1 The first argument to the binary operation
 * @param bm2 The second argument to the binary operation
 * @return An and of bm1 and bm2
 * @throws UtilException If the two bitmaps are of different length
 */
 public static Bitmap and(Bitmap bm1, Bitmap bm2) throws UtilException { … }

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 5: FILES AND JAVA IO

142

operatIons on sImple data types
JAVA 5: FILES AND JAVA IO

142

OpErAtIONS ON SImpLE DAtA typES

 /**
 * Static method returns a bitmap, that is an OR of the bm1 and bm2.
 * @param bm1 The first argument to the binary operation
 * @param bm2 The second argument to the binary operation
 * @return An or of bm1 and bm2
 * @throws UtilException If the two bitmaps are of different length
 */
 public static Bitmap or(Bitmap bm1, Bitmap bm2) throws UtilException { … }

 /**
 * Static method returns a bitmap, that is a XOR of the bm1 and bm2.
 * @param bm1 The first argument to the binary operation
 * @param bm2 The second argument to the binary operation
 * @return A xor of bm1 and bm2
 * @throws UtilException If the two bitmaps are of different length
 */
 public static Bitmap xor(Bitmap bm1, Bitmap bm2) throws UtilException { … }

 /**
 * Static method returns a bitmap, which is a copy of the parameter bm shifted n
 * places to the left.
 * @param bm The bitmap that is copied and changed
 * @param n The number of bits to be shifted
 * @return A copy of bm shifted n places to the left
 */
 public static Bitmap shl(Bitmap bm, int n) { … }

 /**
 * Static method returns a bitmap, which is a copy of the parameter bm shifted n
 * places to the right. It is a non-arithmetic shift.
 * @param bm The bitmap that is copied and changed
 * @param n The number of bits to be shifted
 * @return A copy of bm shifted n places to the right
 */
 public static Bitmap shr(Bitmap bm, int n) { … }
}

You should also expand the class Binary with a new method:

/**
 * Converts a bitmap to a binary string where the individual bytes are separated
 * by the character c.
 * @param bm The bitmap to be converted
 * @param c Seperation character between byte values
 * @return bm converted to a bit string

You should also expand the class Binary with a new method:

/**
 * Converts a bitmap to a binary string where the individual bytes are separated
 * by the character c.
 * @param bm The bitmap to be converted
 * @param c Seperation character between byte values
 * @return bm converted to a bit string

JAVA 5: FILES AND JAVA IO

143

operatIons on sImple data types

 */
public static String toBin(Bitmap bm, char c)
{
}

When you have written the class (and the above methods), you must write a test program
(for example TestBitmap) that can test the class.

PROBLEM 4

As an example of using a bitmap, you must write a program that uses Eratosthenes’s algorithm
to determine the primes. The idea is the following:

In order to determine all prime numbers that are less than or equal to N, start by defining
a bitmap with N+1 elements:

In the beginning all positions are 0. You then starts with putting a mark (a 1 bit) in position
0 and position 1 as well as all the positions where the index is divisible by 2 – though not
position 2:

In this run has been set a mark in all the even numbers greather than 2, as they are not
primes. You then repeats it all, but this time you put a mark on the positions where the
index is divisible by 3 – though not position 3:

All positions where the index has 3 as the prime factor is now marked. Next time you
repeat it all with the number 5 (the first position after 3 that is 0). All positions where the
index has 5 as the prime factor is marked:

JAVA 5: FILES AND JAVA IO

144

operatIons on sImple data types

144

To resume. Next time start with the first position, which is not marked (it is position 7)
and it is a prime, since it would otherwise be marked by a previous cycle. When you have
been through it all, all positions with an index that is not prime are checked.

You must now write a program where the user can enter a number (se the window below).
When you click the Test button, the application must insert a line in the list box that shows
whether the number is a prime number. To determine if this is the case, the program must
use the above algorithm and the class Bitmap from above. You can improve the algorithm
a bit by observing the following:

1. If a number has a prime factor (a prime number that divides the numbert), it or
another prime factor must be less than or equal to the square root of the number,
and the above iteration can therefore stop when starting index is greater than square
root of the number.

2. If you have reached the indexthat is not marked in a previous cycle, iskis a prime, and
you have to mark all the numbers that haskas divisor: 2k, 3k, 4k, …, then it actually is
enough to start withk2, because the position else would be marked by a previous cycle.

3. It is not necessary in the bitmap to track other than the odd numbers, because all
the even numbers greater than 2 are not primes.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 5: FILES AND JAVA IO

145

operatIons on sImple data types

Eratosthenes algorithm is actually a very effective prime method, but the problem is of
course that the bitmap take place in memory – even if you use the above observations.

EXERCISE 8

Create a project that you can call Encoding. Add the following two test methods, where the
first write a text to a file, while the other reads the text again:

JAVA 5: FILES AND JAVA IO

145

OpErAtIONS ON SImpLE DAtA typES

Eratosthenes algorithm is actually a very effective prime method, but the problem is of
course that the bitmap take place in memory – even if you use the above observations.

EXERCISE 8

Create a project that you can call Encoding. Add the following two test methods, where the
first write a text to a file, while the other reads the text again:

private static void test1()
{
 try
 {
 BufferedWriter writer = new BufferedWriter(new FileWriter("test1"));
 writer.write("Søren Sørensen\nPistolStræde 19\n6666 Borremose");
 writer.close();
 }
 catch (Exception ex)
 {
 }
}

private static void test2()
{
 try
 {
 BufferedReader reader = new BufferedReader(new FileReader("test1"));
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);

JAVA 5: FILES AND JAVA IO

146

operatIons on sImple data types
JAVA 5: FILES AND JAVA IO

146

OpErAtIONS ON SImpLE DAtA typES

 reader.close();
 }
 catch (Exception ex)
 {
 }
}

Test the two methods from the main() method. Do they have the expected result?

Write two other test methods:

private static void test3()
{
 try
 {
 BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(new FileOutputStream("test2"), "UTF-8"));
 writer.write("Søren Sørensen\nPistolStræde 19\n6666 Borremose");
 writer.close();
 }
 catch (Exception ex)
 {
 }
}

private static void test4()
{
 try
 {
 BufferedReader reader = new BufferedReader(new InputStreamReader(
 new FileInputStream("test2"), "UTF-8"));
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);
 reader.close();
 }
 catch (Exception ex)
 {
 }
}

Note that the difference is that this time the file is opened in a different manner (with an
additional parameter), and that the file has another name. Test also these two methods from
main() and note that you get the expected result.

Test the two methods from the main() method. Do they have the expected result?

Write two other test methods:

JAVA 5: FILES AND JAVA IO

146

OpErAtIONS ON SImpLE DAtA typES

 reader.close();
 }
 catch (Exception ex)
 {
 }
}

Test the two methods from the main() method. Do they have the expected result?

Write two other test methods:

private static void test3()
{
 try
 {
 BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(new FileOutputStream("test2"), "UTF-8"));
 writer.write("Søren Sørensen\nPistolStræde 19\n6666 Borremose");
 writer.close();
 }
 catch (Exception ex)
 {
 }
}

private static void test4()
{
 try
 {
 BufferedReader reader = new BufferedReader(new InputStreamReader(
 new FileInputStream("test2"), "UTF-8"));
 for (String line = reader.readLine(); line != null; line = reader.readLine())
 System.out.println(line);
 reader.close();
 }
 catch (Exception ex)
 {
 }
}

Note that the difference is that this time the file is opened in a different manner (with an
additional parameter), and that the file has another name. Test also these two methods from
main() and note that you get the expected result.

Note that the difference is that this time the file is opened in a different manner (with an
additional parameter), and that the file has another name. Test also these two methods from
main() and note that you get the expected result.

JAVA 5: FILES AND JAVA IO

147

operatIons on sImple data types

147

Write two more test methods (which you can call test5() and test6()), where the differences
only is that the file has a different name (this time test3) and a second parameter
concerning encoding:

JAVA 5: FILES AND JAVA IO

147

OpErAtIONS ON SImpLE DAtA typES

147

Write two more test methods (which you can call test5() and test6()), where the differences
only is that the file has a different name (this time test3) and a second parameter
concerning encoding:

BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(
 new FileOutputStream("test3"), "ISO-8859-1"));
BufferedReader reader = new BufferedReader(new InputStreamReader(
 new FileInputStream("test3"), "ISO-8859-1"));

Test also these two methods. Write finally two test methods test7() and test8(), where the
files are opened as follows:

BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(new FileOutputStream("test4"), "UTF-16"));
BufferedReader reader = new BufferedReader(
 new InputStreamReader(new FileInputStream("test4"), "UTF-16"));

Test also these two methods. Write finally two test methods test7() and test8(), where the
files are opened as follows:

JAVA 5: FILES AND JAVA IO

147

OpErAtIONS ON SImpLE DAtA typES

147

Write two more test methods (which you can call test5() and test6()), where the differences
only is that the file has a different name (this time test3) and a second parameter
concerning encoding:

BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(
 new FileOutputStream("test3"), "ISO-8859-1"));
BufferedReader reader = new BufferedReader(new InputStreamReader(
 new FileInputStream("test3"), "ISO-8859-1"));

Test also these two methods. Write finally two test methods test7() and test8(), where the
files are opened as follows:

BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(new FileOutputStream("test4"), "UTF-16"));
BufferedReader reader = new BufferedReader(
 new InputStreamReader(new FileInputStream("test4"), "UTF-16"));

http://s.bookboon.com/elearningforkids

JAVA 5: FILES AND JAVA IO

148

operatIons on sImple data types

and try also these two methods. If you uses Files to examines the four files, you can see
how much they fills on the disk:

 - test1 48 bytes
 - test2 48 bytes
 - test3 45 bytes
 - test4 92 bytes

Can you explains this 4 numbers?

EXERCISE 9

Create a project that you can call FloatingPoint. The two wrapper classes Float and Double
have two constants MIN_VALUE and MAX_VALUE. Print these four constants on the screen
and check how it fits with what has been said in the appendix (they’re actually not quite).

You must then open the project for PaLib and add two methods to the class Binary:

JAVA 5: FILES AND JAVA IO

148

OpErAtIONS ON SImpLE DAtA typES

and try also these two methods. If you uses Files to examines the four files, you can see
how much they fills on the disk:

 - test1 48 bytes
 - test2 48 bytes
 - test3 45 bytes
 - test4 92 bytes

Can you explains this 4 numbers?

EXERCISE 9

Create a project that you can call FloatingPoint. The two wrapper classes Float and Double
have two constants MIN_VALUE and MAX_VALUE. Print these four constants on the screen
and check how it fits with what has been said in the appendix (they’re actually not quite).

You must then open the project for PaLib and add two methods to the class Binary:

/**
 * Converts the argument to a binary string of 32 bits.
 * @param t The number to be converted
 * @return The argument converted to a binary string of 32 bits
 */
public static String toBin(float t)
{
}

/**
 * Converts the argument to a binary string of 64 bits.
 * @param t The number to be converted
 * @return The argument converted to a binary string of 64 bits
 */
public static String toBin(double t)
{
}

In fact, it is trivial because the two wrapper classes has the methods Float.floatToRawIntBits()
and Double.doubleToRawLongBits() that you can use. Write equivalent methods, where you
can insert a separation character between the individual bytes:

public static String toBin(float t, char c)
{
}

In fact, it is trivial because the two wrapper classes has the methods Float.floatToRawIntBits()
and Double.doubleToRawLongBits() that you can use. Write equivalent methods, where you
can insert a separation character between the individual bytes:

JAVA 5: FILES AND JAVA IO

148

OpErAtIONS ON SImpLE DAtA typES

and try also these two methods. If you uses Files to examines the four files, you can see
how much they fills on the disk:

 - test1 48 bytes
 - test2 48 bytes
 - test3 45 bytes
 - test4 92 bytes

Can you explains this 4 numbers?

EXERCISE 9

Create a project that you can call FloatingPoint. The two wrapper classes Float and Double
have two constants MIN_VALUE and MAX_VALUE. Print these four constants on the screen
and check how it fits with what has been said in the appendix (they’re actually not quite).

You must then open the project for PaLib and add two methods to the class Binary:

/**
 * Converts the argument to a binary string of 32 bits.
 * @param t The number to be converted
 * @return The argument converted to a binary string of 32 bits
 */
public static String toBin(float t)
{
}

/**
 * Converts the argument to a binary string of 64 bits.
 * @param t The number to be converted
 * @return The argument converted to a binary string of 64 bits
 */
public static String toBin(double t)
{
}

In fact, it is trivial because the two wrapper classes has the methods Float.floatToRawIntBits()
and Double.doubleToRawLongBits() that you can use. Write equivalent methods, where you
can insert a separation character between the individual bytes:

public static String toBin(float t, char c)
{
}

JAVA 5: FILES AND JAVA IO

149

operatIons on sImple data types
JAVA 5: FILES AND JAVA IO

149

OpErAtIONS ON SImpLE DAtA typES

public static String toBin(double t, char c)
{
}

Use these methods to print the binary representation of the numbers 123.45F, -123.45F,
12345.6789 and -12,345.6789 and check if it fits to what is said in the appendix.

The class Float has three further constants: NEGATIVE_INFINITY, POSITIVE_INFINITY
and NaN. Print the binary representation of these constants. Do the same for the class Double.

EXERCISE 10

In problem 3 you you have written a class Bitmap, which is located in your class library
PaLib. The class is included in the package palib.util, and to this package you must add
the following exception class:

package palib.util;
public class UtilException extends Exception
{
 public UtilException(String message)
 {
 super(message);
 }
}

The class Bitmap has four instance methods and four static methods that can all raise an
exception. You must change the class so all these methods instead raises an exception of
type UtilException.

Open the test program TestBitmap and see if it still can be translated (which it should be).
Expand the program with another test method which provoke an exception (as an example an
AND of two bitmaps with different length) and test whether you can catch a UtilException.

Use these methods to print the binary representation of the numbers 123.45F, -123.45F,
12345.6789 and -12,345.6789 and check if it fits to what is said in the appendix.

The class Float has three further constants: NEGATIVE_INFINITY, POSITIVE_INFINITY
and NaN. Print the binary representation of these constants. Do the same for the class Double.

EXERCISE 10

In problem 3 you you have written a class Bitmap, which is located in your class library
PaLib. The class is included in the package palib.util, and to this package you must add
the following exception class:

JAVA 5: FILES AND JAVA IO

149

OpErAtIONS ON SImpLE DAtA typES

public static String toBin(double t, char c)
{
}

Use these methods to print the binary representation of the numbers 123.45F, -123.45F,
12345.6789 and -12,345.6789 and check if it fits to what is said in the appendix.

The class Float has three further constants: NEGATIVE_INFINITY, POSITIVE_INFINITY
and NaN. Print the binary representation of these constants. Do the same for the class Double.

EXERCISE 10

In problem 3 you you have written a class Bitmap, which is located in your class library
PaLib. The class is included in the package palib.util, and to this package you must add
the following exception class:

package palib.util;
public class UtilException extends Exception
{
 public UtilException(String message)
 {
 super(message);
 }
}

The class Bitmap has four instance methods and four static methods that can all raise an
exception. You must change the class so all these methods instead raises an exception of
type UtilException.

Open the test program TestBitmap and see if it still can be translated (which it should be).
Expand the program with another test method which provoke an exception (as an example an
AND of two bitmaps with different length) and test whether you can catch a UtilException.

The class Bitmap has four instance methods and four static methods that can all raise an
exception. You must change the class so all these methods instead raises an exception of
type UtilException.

Open the test program TestBitmap and see if it still can be translated (which it should be).
Expand the program with another test method which provoke an exception (as an example an
AND of two bitmaps with different length) and test whether you can catch a UtilException.

JAVA 5: FILES AND JAVA IO

150

FInal example

150

5 FINAL EXAMPLE

As a final example I will show a program that can open any file and edit the content –
whether you have the right to do so. The program should display the content of a file in
hexadecimal, and you can edit the file by modifying the individual bytes. The program can
edit all files without exception (text files, images, translated programs, etc.), but another
question is, whether you can get something out of it, and whether you can interpret the
hexadecimal codes.

Contrary to what has been the case with the final examples in the previous books, which
have primarily been focused on the process, I will in this example primarily look at the
result and hence the program code. I will start with a presentation of the program to explain
what the program is doing. When you opens the program, you get the following window:

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 5: FILES AND JAVA IO

151

FInal example

The window contains two JTextArea components in a JSplitPane. The left component is the
one that displays the content of the file in hexadecimal and where you can edit the file.
The right component shows the content of the file interpreted as a text – to the extent
that it is possible.

The function of the top seven buttons appears largely from the text where the first button
clear the window and thus creates an empty file, while the three next are used to respectively
open a file, save a file, and save a file as. Because files can be very large, the content of a
JTextArea can be so large that it is not manageable (the program will be slow), and therefore
large files are split into blocks, and the program works with a single block at a time. The
fifth and sixth button is used to scroll back and forth in these blocks. Finally opens the
last button, a dialog box where you can set the size of the blocks and how many bytes to
show per line:

JAVA 5: FILES AND JAVA IO

152

FInal example

After the program is opened there is not yet loaded any file, but you may well start entering
data. Below is the window after I have entered 6 bytes:

Bytes are entered as their hexadecimal codes. Now you can not only enter, but you must
insert a byte by pressing the Insert key, which inserts a byte at the cursor position width
the value 00. Then you can change the value by typing

JAVA 5: FILES AND JAVA IO

152

FINAL ExAmpLE

After the program is opened there is not yet loaded any file, but you may well start entering
data. Below is the window after I have entered 6 bytes:

Bytes are entered as their hexadecimal codes. Now you can not only enter, but you must
insert a byte by pressing the Insert key, which inserts a byte at the cursor position width
the value 00. Then you can change the value by typing

0, 1, 2, …, 9, a, b, …, f

JAVA 5: FILES AND JAVA IO

153

FInal example

153

The program inserts a space between the individual bytes by itself, and it is only for the
sake of readability. If you save the above result in a file and examine the file, you will find
that the file contains the text

JAVA 5: FILES AND JAVA IO

153

FINAL ExAmpLE

153

The program inserts a space between the individual bytes by itself, and it is only for the
sake of readability. If you save the above result in a file and examine the file, you will find
that the file contains the text

ABCDEF

If you look at the program it is in principle a very simple program that alone contains a
main window and a single simple dialog box. There is also a model, which, incidentally, is
not very complex, and the program consists then of three classes. The most complex is the
class MainView, which contains many details.

5.1 THE MODEL

I’ll start with the model. The model must represent a data file, and in order to handle large
files, that have been defined a simple class that represents a data block to a file:

class Block
{
 public byte[] buffer;
 public int size;

If you look at the program it is in principle a very simple program that alone contains a
main window and a single simple dialog box. There is also a model, which, incidentally, is
not very complex, and the program consists then of three classes. The most complex is the
class MainView, which contains many details.

5.1 THE MODEL

I’ll start with the model. The model must represent a data file, and in order to handle large
files, that have been defined a simple class that represents a data block to a file:

JAVA 5: FILES AND JAVA IO

153

FINAL ExAmpLE

153

The program inserts a space between the individual bytes by itself, and it is only for the
sake of readability. If you save the above result in a file and examine the file, you will find
that the file contains the text

ABCDEF

If you look at the program it is in principle a very simple program that alone contains a
main window and a single simple dialog box. There is also a model, which, incidentally, is
not very complex, and the program consists then of three classes. The most complex is the
class MainView, which contains many details.

5.1 THE MODEL

I’ll start with the model. The model must represent a data file, and in order to handle large
files, that have been defined a simple class that represents a data block to a file:

class Block
{
 public byte[] buffer;
 public int size;

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 5: FILES AND JAVA IO

154

FInal example
JAVA 5: FILES AND JAVA IO

154

FINAL ExAmpLE

 public Block(int size)
 {
 buffer = new byte[2 * size];
 }
}

The class is consisting of a byte buffer and an int, which defines the number of bytes in the
buffer. The buffer is created by the constructor, where the parameter specifies the buffer’s
size, but you should note that the buffer is created as twice the size. The reason is that it
should be possible to add new bytes, and therefore, there must be some available space. Note
that instead I could have applied an ArrayList<Byte>, but when I have defined a buffer as
an array, it is because you can directly read data to and directly write data from an array
when reading and writing files.

Also note that I have deviated from the good principles and defined both variables as public.
It is to make the code simpler and make references to the class’s variables simpler, and when
the class has package visibility and alone is a helper class for this program, I have allowed
not to use the usual data encapsulation. It’s actually something that you sometimes see (and
there might be good reasons for) with simple helper classes which are only known within
the program’s package.

The model class is the following:

public class Model
{
 private int lineLength = 32; // number of bytes in a line
 private int blockSize = 524288; // size og af block in bytes
 private boolean changed = false; // if content of this block is changed
 private File file = null; // reference to the file to be edit

 private List<Block> buffers = new ArrayList();
 private int current = 0;

By default the program displays 32 bytes in a line, and the block size is as default 524288
bytes (½ megabyte). The last one is a bit of a trade-off, where a small block size means
effectiveness in the editing of the file’s content, but in return many blocks to be edited one
at a time. Increasing the block size also increases the chances that the whole file can be in
a single block, but on the other hand, it could be slow to edit the file. These are the two
values that can be changed in the Options dialog box.

The class is consisting of a byte buffer and an int, which defines the number of bytes in the
buffer. The buffer is created by the constructor, where the parameter specifies the buffer’s
size, but you should note that the buffer is created as twice the size. The reason is that it
should be possible to add new bytes, and therefore, there must be some available space. Note
that instead I could have applied an ArrayList<Byte>, but when I have defined a buffer as
an array, it is because you can directly read data to and directly write data from an array
when reading and writing files.

Also note that I have deviated from the good principles and defined both variables as public.
It is to make the code simpler and make references to the class’s variables simpler, and when
the class has package visibility and alone is a helper class for this program, I have allowed
not to use the usual data encapsulation. It’s actually something that you sometimes see (and
there might be good reasons for) with simple helper classes which are only known within
the program’s package.

The model class is the following:

JAVA 5: FILES AND JAVA IO

154

FINAL ExAmpLE

 public Block(int size)
 {
 buffer = new byte[2 * size];
 }
}

The class is consisting of a byte buffer and an int, which defines the number of bytes in the
buffer. The buffer is created by the constructor, where the parameter specifies the buffer’s
size, but you should note that the buffer is created as twice the size. The reason is that it
should be possible to add new bytes, and therefore, there must be some available space. Note
that instead I could have applied an ArrayList<Byte>, but when I have defined a buffer as
an array, it is because you can directly read data to and directly write data from an array
when reading and writing files.

Also note that I have deviated from the good principles and defined both variables as public.
It is to make the code simpler and make references to the class’s variables simpler, and when
the class has package visibility and alone is a helper class for this program, I have allowed
not to use the usual data encapsulation. It’s actually something that you sometimes see (and
there might be good reasons for) with simple helper classes which are only known within
the program’s package.

The model class is the following:

public class Model
{
 private int lineLength = 32; // number of bytes in a line
 private int blockSize = 524288; // size og af block in bytes
 private boolean changed = false; // if content of this block is changed
 private File file = null; // reference to the file to be edit

 private List<Block> buffers = new ArrayList();
 private int current = 0;

By default the program displays 32 bytes in a line, and the block size is as default 524288
bytes (½ megabyte). The last one is a bit of a trade-off, where a small block size means
effectiveness in the editing of the file’s content, but in return many blocks to be edited one
at a time. Increasing the block size also increases the chances that the whole file can be in
a single block, but on the other hand, it could be slow to edit the file. These are the two
values that can be changed in the Options dialog box.

By default the program displays 32 bytes in a line, and the block size is as default 524288
bytes (½ megabyte). The last one is a bit of a trade-off, where a small block size means
effectiveness in the editing of the file’s content, but in return many blocks to be edited one
at a time. Increasing the block size also increases the chances that the whole file can be in
a single block, but on the other hand, it could be slow to edit the file. These are the two
values that can be changed in the Options dialog box.

JAVA 5: FILES AND JAVA IO

155

FInal example

The model also has a variable changed, which is used to keep track of the model’s on state,
and where it is changed corresponding to that the file is edited. Then there is the variable
file that refers to the file been opened. If the variable is null, it means that there is not
loaded a file.

The list is for blocks, and by small files (by default less than a ½ megabyte) there is only
one block. Along with the list is that the variable current, which indicates the block that is
currently been displayed in the editor.

The model has several get and set methods and including methods for navigating the variable
current, and there is especially more get methods that return information about the model’s
state. They are generally simple, and I will not show these methods here.

The class also has methods to read and save a file. Below is shown the method, which
opens a file:

JAVA 5: FILES AND JAVA IO

155

FINAL ExAmpLE

The model also has a variable changed, which is used to keep track of the model’s on state,
and where it is changed corresponding to that the file is edited. Then there is the variable
file that refers to the file been opened. If the variable is null, it means that there is not
loaded a file.

The list is for blocks, and by small files (by default less than a ½ megabyte) there is only
one block. Along with the list is that the variable current, which indicates the block that is
currently been displayed in the editor.

The model has several get and set methods and including methods for navigating the variable
current, and there is especially more get methods that return information about the model’s
state. They are generally simple, and I will not show these methods here.

The class also has methods to read and save a file. Below is shown the method, which
opens a file:

public boolean open(File file)
{
 this.file = file;
 buffers.clear();
 try (RandomAccessFile f = new RandomAccessFile(file.getAbsolutePath(), "r"))
 {
 while (true)
 {
 Block block = new Block(blockSize);
 block.size = f.read(block.buffer, 0, blockSize);
 buffers.add(block);
 if (block.size < blockSize) break;
 }
 changed = false;
 return true;
 }
 catch (IOException ex)
 {
 clear();
 return false;
 }
}

The method is in principle simple, and the file is read as a RandomAccessFile. Input is
performed in a loop, which reads a block at a time, and the result is that a large file is
divided into several blocks. Similarly is below a method that saved the file:

The method is in principle simple, and the file is read as a RandomAccessFile. Input is
performed in a loop, which reads a block at a time, and the result is that a large file is
divided into several blocks. Similarly is below a method that saved the file:

JAVA 5: FILES AND JAVA IO

156

FInal example

156

JAVA 5: FILES AND JAVA IO

156

FINAL ExAmpLE

156

public boolean save()
{
 if (file == null) return false;
 try (RandomAccessFile f = new RandomAccessFile(file.getAbsolutePath(), "rw"))
 {
 long length = 0;
 for (Block block : buffers)
 {
 f.write(block.buffer, 0, block.size);
 length += block.size;
 }
 f.setLength(length);
 return true;
 }
 catch (Exception ex)
 {
 return false;
 }
}

This method will overwrite the existing file, and you should especially note that the method
ends with updating the file length. It is necessary, as there may be deleted bytes, and the
file thus has fewer bytes.

This method will overwrite the existing file, and you should especially note that the method
ends with updating the file length. It is necessary, as there may be deleted bytes, and the
file thus has fewer bytes.

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 5: FILES AND JAVA IO

157

FInal example

5.2 THE USER INTERFACE

This is essentially the class MainView, which is a relatively complex class. Since I do not
want to allow the user to edit the content arbitrarily, but only must enter the hexadecimal
values of the individual bytes, it is necessary to program the event handling for the keyboard
and also the mouse, and it is in fact why the class is a bit complicated. You are encouraged
to study the finished code thoroughly, but below I will briefly mention the most important.

The class defines the following variables:

JAVA 5: FILES AND JAVA IO

157

FINAL ExAmpLE

5.2 THE USER INTERFACE

This is essentially the class MainView, which is a relatively complex class. Since I do not
want to allow the user to edit the content arbitrarily, but only must enter the hexadecimal
values of the individual bytes, it is necessary to program the event handling for the keyboard
and also the mouse, and it is in fact why the class is a bit complicated. You are encouraged
to study the finished code thoroughly, but below I will briefly mention the most important.

The class defines the following variables:

private Model model = new Model();
private JTextArea txtEdit;
private JTextArea txtText;
private JLabel lblText = new JLabel();
private JLabel lblPosition = new JLabel();
private JScrollPane scroll1;
private JScrollPane scroll2;
private Scroller scroller;

Here are the two JTextArea components that are for the views of the current file, where
txtEdit is used to edit the content as hexadecimal values, while txtText is used to display
the content interpreted as text. The two JLabel components are placed in the bottom of the
window and are used to show respectively, the file name (and size), and where in the file
the cursor is. The two JScrollPane components are for encapsulation of the two JTextArea
components, and finally the last one whose type is Scroller. It is an inner class, which I will
not show here, but it must synchronize the two JScrollPane containers, such that if you
scrolls one then the other scrolls automatically. You are encouraged to study how it works.

As for the design of the user interface there is nothing new, but you should note the method

private JTextArea createEditor()
{
 JTextArea txt = new HexEditor();
 txt.setFont(new Font("FreeMono", Font.PLAIN, 18));
 return txt;
}

which creates the component txtEdit. Its type is HexEditor, and it is an inner class that
inherits JTextArea:

class HexEditor extends JTextArea
{

Here are the two JTextArea components that are for the views of the current file, where
txtEdit is used to edit the content as hexadecimal values, while txtText is used to display
the content interpreted as text. The two JLabel components are placed in the bottom of the
window and are used to show respectively, the file name (and size), and where in the file
the cursor is. The two JScrollPane components are for encapsulation of the two JTextArea
components, and finally the last one whose type is Scroller. It is an inner class, which I will
not show here, but it must synchronize the two JScrollPane containers, such that if you
scrolls one then the other scrolls automatically. You are encouraged to study how it works.

As for the design of the user interface there is nothing new, but you should note the method

JAVA 5: FILES AND JAVA IO

157

FINAL ExAmpLE

5.2 THE USER INTERFACE

This is essentially the class MainView, which is a relatively complex class. Since I do not
want to allow the user to edit the content arbitrarily, but only must enter the hexadecimal
values of the individual bytes, it is necessary to program the event handling for the keyboard
and also the mouse, and it is in fact why the class is a bit complicated. You are encouraged
to study the finished code thoroughly, but below I will briefly mention the most important.

The class defines the following variables:

private Model model = new Model();
private JTextArea txtEdit;
private JTextArea txtText;
private JLabel lblText = new JLabel();
private JLabel lblPosition = new JLabel();
private JScrollPane scroll1;
private JScrollPane scroll2;
private Scroller scroller;

Here are the two JTextArea components that are for the views of the current file, where
txtEdit is used to edit the content as hexadecimal values, while txtText is used to display
the content interpreted as text. The two JLabel components are placed in the bottom of the
window and are used to show respectively, the file name (and size), and where in the file
the cursor is. The two JScrollPane components are for encapsulation of the two JTextArea
components, and finally the last one whose type is Scroller. It is an inner class, which I will
not show here, but it must synchronize the two JScrollPane containers, such that if you
scrolls one then the other scrolls automatically. You are encouraged to study how it works.

As for the design of the user interface there is nothing new, but you should note the method

private JTextArea createEditor()
{
 JTextArea txt = new HexEditor();
 txt.setFont(new Font("FreeMono", Font.PLAIN, 18));
 return txt;
}

which creates the component txtEdit. Its type is HexEditor, and it is an inner class that
inherits JTextArea:

class HexEditor extends JTextArea
{

which creates the component txtEdit. Its type is HexEditor, and it is an inner class that
inherits JTextArea:

JAVA 5: FILES AND JAVA IO

157

FINAL ExAmpLE

5.2 THE USER INTERFACE

This is essentially the class MainView, which is a relatively complex class. Since I do not
want to allow the user to edit the content arbitrarily, but only must enter the hexadecimal
values of the individual bytes, it is necessary to program the event handling for the keyboard
and also the mouse, and it is in fact why the class is a bit complicated. You are encouraged
to study the finished code thoroughly, but below I will briefly mention the most important.

The class defines the following variables:

private Model model = new Model();
private JTextArea txtEdit;
private JTextArea txtText;
private JLabel lblText = new JLabel();
private JLabel lblPosition = new JLabel();
private JScrollPane scroll1;
private JScrollPane scroll2;
private Scroller scroller;

Here are the two JTextArea components that are for the views of the current file, where
txtEdit is used to edit the content as hexadecimal values, while txtText is used to display
the content interpreted as text. The two JLabel components are placed in the bottom of the
window and are used to show respectively, the file name (and size), and where in the file
the cursor is. The two JScrollPane components are for encapsulation of the two JTextArea
components, and finally the last one whose type is Scroller. It is an inner class, which I will
not show here, but it must synchronize the two JScrollPane containers, such that if you
scrolls one then the other scrolls automatically. You are encouraged to study how it works.

As for the design of the user interface there is nothing new, but you should note the method

private JTextArea createEditor()
{
 JTextArea txt = new HexEditor();
 txt.setFont(new Font("FreeMono", Font.PLAIN, 18));
 return txt;
}

which creates the component txtEdit. Its type is HexEditor, and it is an inner class that
inherits JTextArea:

class HexEditor extends JTextArea
{

JAVA 5: FILES AND JAVA IO

158

FInal example
JAVA 5: FILES AND JAVA IO

158

FINAL ExAmpLE

 public HexEditor()
 {
 addKeyListener(new KeyHandler());
 setMouseListener();
 setMouseMotionListener();
 }

The class’s constructor adds a new handler for events from the keyboard, and also call the
two methods, which remove event handlers for the mouse and define a new one that does
nothing but to place the cursor, if you clicks on the component. The handler must solve
the problem that you must not place the cursor in front of a space or the end of a line.

As for the keyboard, the program beyond the 16 keys to hexadecimal digits, the program
supports the following keys:

 - insert
 - delete
 - the 4 arrow keys
 - home and ctrl home
 - end and ctrl end
 - pagedown
 - pageup

wherein the two first modifies the content, while the other navigates the cursor.

The event handler for the keyboard is called

public void keyPressed(KeyEvent e)
{

and mainly consists of a switch, where is switched on the keyboard codes to be treated.
Whether it is a key to be treated or not the following statement is executed

e.consume();

The class’s constructor adds a new handler for events from the keyboard, and also call the
two methods, which remove event handlers for the mouse and define a new one that does
nothing but to place the cursor, if you clicks on the component. The handler must solve
the problem that you must not place the cursor in front of a space or the end of a line.

As for the keyboard, the program beyond the 16 keys to hexadecimal digits, the program
supports the following keys:

 - insert
 - delete
 - the 4 arrow keys
 - home and ctrl home
 - end and ctrl end
 - pagedown
 - pageup

wherein the two first modifies the content, while the other navigates the cursor.

The event handler for the keyboard is called

JAVA 5: FILES AND JAVA IO

158

FINAL ExAmpLE

 public HexEditor()
 {
 addKeyListener(new KeyHandler());
 setMouseListener();
 setMouseMotionListener();
 }

The class’s constructor adds a new handler for events from the keyboard, and also call the
two methods, which remove event handlers for the mouse and define a new one that does
nothing but to place the cursor, if you clicks on the component. The handler must solve
the problem that you must not place the cursor in front of a space or the end of a line.

As for the keyboard, the program beyond the 16 keys to hexadecimal digits, the program
supports the following keys:

 - insert
 - delete
 - the 4 arrow keys
 - home and ctrl home
 - end and ctrl end
 - pagedown
 - pageup

wherein the two first modifies the content, while the other navigates the cursor.

The event handler for the keyboard is called

public void keyPressed(KeyEvent e)
{

and mainly consists of a switch, where is switched on the keyboard codes to be treated.
Whether it is a key to be treated or not the following statement is executed

e.consume();

and mainly consists of a switch, where is switched on the keyboard codes to be treated.
Whether it is a key to be treated or not the following statement is executed

JAVA 5: FILES AND JAVA IO

158

FINAL ExAmpLE

 public HexEditor()
 {
 addKeyListener(new KeyHandler());
 setMouseListener();
 setMouseMotionListener();
 }

The class’s constructor adds a new handler for events from the keyboard, and also call the
two methods, which remove event handlers for the mouse and define a new one that does
nothing but to place the cursor, if you clicks on the component. The handler must solve
the problem that you must not place the cursor in front of a space or the end of a line.

As for the keyboard, the program beyond the 16 keys to hexadecimal digits, the program
supports the following keys:

 - insert
 - delete
 - the 4 arrow keys
 - home and ctrl home
 - end and ctrl end
 - pagedown
 - pageup

wherein the two first modifies the content, while the other navigates the cursor.

The event handler for the keyboard is called

public void keyPressed(KeyEvent e)
{

and mainly consists of a switch, where is switched on the keyboard codes to be treated.
Whether it is a key to be treated or not the following statement is executed

e.consume();

JAVA 5: FILES AND JAVA IO

159

FInal example

159

which means that the event is not passed on and thus not to the usual event handling in the
base class JTextArea. Most entries in the switch statement calls a method that performs the
desired action. As an example is shown below the method called, if the insert key is entered:

JAVA 5: FILES AND JAVA IO

159

FINAL ExAmpLE

159

which means that the event is not passed on and thus not to the usual event handling in the
base class JTextArea. Most entries in the switch statement calls a method that performs the
desired action. As an example is shown below the method called, if the insert key is entered:

private void insertChar(int p)
{
 if (model.getBlock().buffer.length == model.getBlock().size + 1) return;
 int n = p / 3;
 if (p % 3 > 0) ++n;
 for (int i = model.getBlock().size; i > n; --i)
 model.getBlock().buffer[i] = model.getBlock().buffer[i – 1];
 model.getBlock().buffer[n] = 0;
 ++model.getBlock().size;
 showFile();
 model.change();
 showPosition();
 setCaretPosition(p);
}

http://s.bookboon.com/EOT

JAVA 5: FILES AND JAVA IO

160

FInal example

The parameter is the cursor position. The first thing that happens is that the cursor position
must be converted to the byte position in the model, where to insert a new byte, and here
one must note that a byte because of the space fills three characters in the component.
Here are adopted, if the cursor is in front of a byte, a new byte must be inserted in front,
and if the cursor is inside the byte, a new byte must be inserted after. Within the byte
can be inserted, the subsequent bytes are moved one place forward and the new byte will
have the value 0. Also note that the size of the buffer is counted up by 1. Next is called a
method showFile() (a method also used in other contexts) which is the method that shows
the content of the file (actual the current block). Finally the method showPosition() is called,
which updates the status bar. These methods are, in principle, simple and not shown here.
I will instead show the method that is called when a byte has to be changed:

JAVA 5: FILES AND JAVA IO

160

FINAL ExAmpLE

The parameter is the cursor position. The first thing that happens is that the cursor position
must be converted to the byte position in the model, where to insert a new byte, and here
one must note that a byte because of the space fills three characters in the component.
Here are adopted, if the cursor is in front of a byte, a new byte must be inserted in front,
and if the cursor is inside the byte, a new byte must be inserted after. Within the byte
can be inserted, the subsequent bytes are moved one place forward and the new byte will
have the value 0. Also note that the size of the buffer is counted up by 1. Next is called a
method showFile() (a method also used in other contexts) which is the method that shows
the content of the file (actual the current block). Finally the method showPosition() is called,
which updates the status bar. These methods are, in principle, simple and not shown here.
I will instead show the method that is called when a byte has to be changed:

private void changeChar(char ch)
{
 int p = getCaretPosition();
 String text = getText();
 setText(text.substring(0, p) + ch + text.substring(p + 1));
 byte b2 = (byte)(ch >= '0' && ch <= '9' ? ch – '0' : ch – 'a');
 int n = p / 3;
 model.getBlock().buffer[n] = p % 3 == 0 ?
 (byte)(((b2 << 4) | (model.getBlock().buffer[n] & 0x0f)) & 0x000000ff) :
 (byte)(((model.getBlock().buffer[n] & 0xf0) | b2) & 0x000000ff);
 model.change();
 setCaretPosition(p);
}

The method’s parameter is the character entered, and the first thing that happens is that
the component is updated with the character in the right place. Then also the model must
be updated. First is determined the character’s value as a value between 0 and 15 inclusive.
Next, the cursor position again must be converted into the right byte position in the model,
and then it is determined whether it is the first or the last of the two digits to be changed.
You should note that this method does not call the showFile(), what it really should. The
reason is performence and the result is that the right component that displays the content
as text is not updated, and therefore do not necessarily show the right content.

5.3 THE DIALOG BOX

This leaves the dialog box, which is used to change the parameters of the block size and
the number of bytes per line. There is not much to explain, but you should note, that
if the dialog box is used, the result is a blank file, and there is not loaded any file. It’s a
somewhat easy solution, but the reason is to change the block size, it is necessary to create
new blocks. You should also note that the coupling between the MainView and the dialog
box is strong but simple and is also a matter of reaching easy to the target.

The method’s parameter is the character entered, and the first thing that happens is that
the component is updated with the character in the right place. Then also the model must
be updated. First is determined the character’s value as a value between 0 and 15 inclusive.
Next, the cursor position again must be converted into the right byte position in the model,
and then it is determined whether it is the first or the last of the two digits to be changed.
You should note that this method does not call the showFile(), what it really should. The
reason is performence and the result is that the right component that displays the content
as text is not updated, and therefore do not necessarily show the right content.

5.3 THE DIALOG BOX

This leaves the dialog box, which is used to change the parameters of the block size and
the number of bytes per line. There is not much to explain, but you should note, that
if the dialog box is used, the result is a blank file, and there is not loaded any file. It’s a
somewhat easy solution, but the reason is to change the block size, it is necessary to create
new blocks. You should also note that the coupling between the MainView and the dialog
box is strong but simple and is also a matter of reaching easy to the target.

JAVA 5: FILES AND JAVA IO

161

FInal example

APPENDIX A

If you technically have to deal with computers, you can not ignore the binary number, as
there are a lot of details that you can not explain without having knowledge of the numbers
and their binary representation. The following is a brief introduction to the binary numbers
and including the hexadecimal system in view of applications in computer technology, but
it is by no means an accurate treatment of number systems in general.

The numbers presented to us at the school are decimal numbers in which numbers are
represented by 10 symbols, for example

JAVA 5: FILES AND JAVA IO

161

FINAL ExAmpLE

APPENDIX A

If you technically have to deal with computers, you can not ignore the binary number, as
there are a lot of details that you can not explain without having knowledge of the numbers
and their binary representation. The following is a brief introduction to the binary numbers
and including the hexadecimal system in view of applications in computer technology, but
it is by no means an accurate treatment of number systems in general.

The numbers presented to us at the school are decimal numbers in which numbers are
represented by 10 symbols, for example

18207

When we meet the number, we know exactly what it means, because we know the 10
symbols and their interpretation in relation to where a symbol appears in the number. The
decimal number system is a positional number system as the value of a digit is determined
by its position:

18207 = 1 tens of thousands plus 8 thousands plus 2 hundreds plus 0 tens plus 7 ones

When we are taught to work with these numbers, we find them simple and easy to understand,
but the reason is, that people very easy and very safe can survey and learn the 10 symbols.

The decimal system or 10-number system is not the only number system that people have
historically used. For example, was previously used a 60-number system, which you can
see the remains of in our division of the time: 1 hour divided into 60 minutes, 1 minute
divided into 60 seconds. The 60-number system has also been used in commercially trade
calculation. The system has several advantages. 60 has many divisors, which means that you
can formulate many rules of arithmetic, and even quite large numbers does not take up so
much, but there is however also a very big disadvantage, namely that the system requires
60 symbols (there are actually historical writings that shows the 60 symbols). That the
10-number system that has become the preferred, it is believed that it is because we have
10 fingers. Actually, there are also examples of how people have used a 20-number system
(we also have 10 toes).

When we meet the number, we know exactly what it means, because we know the 10
symbols and their interpretation in relation to where a symbol appears in the number. The
decimal number system is a positional number system as the value of a digit is determined
by its position:

18207 = 1 tens of thousands plus 8 thousands plus 2 hundreds plus 0 tens plus 7 ones

When we are taught to work with these numbers, we find them simple and easy to understand,
but the reason is, that people very easy and very safe can survey and learn the 10 symbols.

The decimal system or 10-number system is not the only number system that people have
historically used. For example, was previously used a 60-number system, which you can
see the remains of in our division of the time: 1 hour divided into 60 minutes, 1 minute
divided into 60 seconds. The 60-number system has also been used in commercially trade
calculation. The system has several advantages. 60 has many divisors, which means that you
can formulate many rules of arithmetic, and even quite large numbers does not take up so
much, but there is however also a very big disadvantage, namely that the system requires
60 symbols (there are actually historical writings that shows the 60 symbols). That the
10-number system that has become the preferred, it is believed that it is because we have
10 fingers. Actually, there are also examples of how people have used a 20-number system
(we also have 10 toes).

JAVA 5: FILES AND JAVA IO

162

FInal example

162

If you look at integers in the 10-number system, they can be written as

110

Appendix A

If you technically have to deal with computers, you can not ignore the binary number, as there are a lot
of details that you can not explain without having knowledge of the numbers and their binary
representation. The following is a brief introduction to the binary numbers and including the
hexadecimal system in view of applications in computer technology, but it is by no means an accurate
treatment of number systems in general.

The numbers presented to us at the school are decimal numbers in which numbers are represented by
10 symbols, for example

18207

When we meet the number, we know exactly what it means, because we know the 10 symbols and
their interpretation in relation to where a symbol appears in the number. The decimal number system
is a positional number system as the value of a digit is determined by its position:

18207 = 1 tens of thousands plus 8 thousands plus 2 hundreds plus 0 tens plus 7 ones

When we are taught to work with these numbers, we find them simple and easy to understand, but the
reason is, that people very easy and very safe can survey and learn the 10 symbols.

The decimal system or 10-number system is not the only number system that people have historically
used. For example, was previously used a 60-number system, which you can see the remains of in our
division of the time: 1 hour divided into 60 minutes, 1 minute divided into 60 seconds. The 60-number
system has also been used in commercially trade calculation. The system has several advantages. 60
has many divisors, which means that you can formulate many rules of arithmetic, and even quite large
numbers does not take up so much, but there is however also a very big disadvantage, namely that the
system requires 60 symbols (there are actually historical writings that shows the 60 symbols). That the
10-number system that has become the preferred, it is believed that it is because we have 10 fingers.
Actually, there are also examples of how people have used a 20-number system (we also have 10
toes).

If you look at integers in the 10-number system, they can be written as 𝑡𝑡 = ∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=0 10𝑖𝑖 where the
number has 𝑛𝑛 + 1 digits, and 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all is one of the symbols 0, 1, 2, ..., 9. As an example is

18207 = 7 ∗ 100 + 0 ∗ 101 + 2 ∗ 10² + 8 ∗ 103 + 1 ∗ 104

That is 𝑛𝑛 = 4 and 𝑎𝑎0 = 7, 𝑎𝑎1 = 0, 𝑎𝑎2 = 2, 𝑎𝑎3 = 8 and 𝑎𝑎4 = 1.

Wee say therefore that the decimal system is a positional number system with base 10. This
presentation of the numbers can immediately be generalized to other bases, and actually there is a
number system for any natural number greater than 1. As an example the 60-number system
mentioned above is a system where the base number is 60.

 where
the number has n + 1 digits, and

110

Appendix A

If you technically have to deal with computers, you can not ignore the binary number, as there are a lot
of details that you can not explain without having knowledge of the numbers and their binary
representation. The following is a brief introduction to the binary numbers and including the
hexadecimal system in view of applications in computer technology, but it is by no means an accurate
treatment of number systems in general.

The numbers presented to us at the school are decimal numbers in which numbers are represented by
10 symbols, for example

18207

When we meet the number, we know exactly what it means, because we know the 10 symbols and
their interpretation in relation to where a symbol appears in the number. The decimal number system
is a positional number system as the value of a digit is determined by its position:

18207 = 1 tens of thousands plus 8 thousands plus 2 hundreds plus 0 tens plus 7 ones

When we are taught to work with these numbers, we find them simple and easy to understand, but the
reason is, that people very easy and very safe can survey and learn the 10 symbols.

The decimal system or 10-number system is not the only number system that people have historically
used. For example, was previously used a 60-number system, which you can see the remains of in our
division of the time: 1 hour divided into 60 minutes, 1 minute divided into 60 seconds. The 60-number
system has also been used in commercially trade calculation. The system has several advantages. 60
has many divisors, which means that you can formulate many rules of arithmetic, and even quite large
numbers does not take up so much, but there is however also a very big disadvantage, namely that the
system requires 60 symbols (there are actually historical writings that shows the 60 symbols). That the
10-number system that has become the preferred, it is believed that it is because we have 10 fingers.
Actually, there are also examples of how people have used a 20-number system (we also have 10
toes).

If you look at integers in the 10-number system, they can be written as 𝑡𝑡 = ∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=0 10𝑖𝑖 where the
number has 𝑛𝑛 + 1 digits, and 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all is one of the symbols 0, 1, 2, ..., 9. As an example is

18207 = 7 ∗ 100 + 0 ∗ 101 + 2 ∗ 10² + 8 ∗ 103 + 1 ∗ 104

That is 𝑛𝑛 = 4 and 𝑎𝑎0 = 7, 𝑎𝑎1 = 0, 𝑎𝑎2 = 2, 𝑎𝑎3 = 8 and 𝑎𝑎4 = 1.

Wee say therefore that the decimal system is a positional number system with base 10. This
presentation of the numbers can immediately be generalized to other bases, and actually there is a
number system for any natural number greater than 1. As an example the 60-number system
mentioned above is a system where the base number is 60.

 all is one of the symbols 0, 1, 2, …, 9. As
an example is

110

Appendix A

If you technically have to deal with computers, you can not ignore the binary number, as there are a lot
of details that you can not explain without having knowledge of the numbers and their binary
representation. The following is a brief introduction to the binary numbers and including the
hexadecimal system in view of applications in computer technology, but it is by no means an accurate
treatment of number systems in general.

The numbers presented to us at the school are decimal numbers in which numbers are represented by
10 symbols, for example

18207

When we meet the number, we know exactly what it means, because we know the 10 symbols and
their interpretation in relation to where a symbol appears in the number. The decimal number system
is a positional number system as the value of a digit is determined by its position:

18207 = 1 tens of thousands plus 8 thousands plus 2 hundreds plus 0 tens plus 7 ones

When we are taught to work with these numbers, we find them simple and easy to understand, but the
reason is, that people very easy and very safe can survey and learn the 10 symbols.

The decimal system or 10-number system is not the only number system that people have historically
used. For example, was previously used a 60-number system, which you can see the remains of in our
division of the time: 1 hour divided into 60 minutes, 1 minute divided into 60 seconds. The 60-number
system has also been used in commercially trade calculation. The system has several advantages. 60
has many divisors, which means that you can formulate many rules of arithmetic, and even quite large
numbers does not take up so much, but there is however also a very big disadvantage, namely that the
system requires 60 symbols (there are actually historical writings that shows the 60 symbols). That the
10-number system that has become the preferred, it is believed that it is because we have 10 fingers.
Actually, there are also examples of how people have used a 20-number system (we also have 10
toes).

If you look at integers in the 10-number system, they can be written as 𝑡𝑡 = ∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=0 10𝑖𝑖 where the
number has 𝑛𝑛 + 1 digits, and 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all is one of the symbols 0, 1, 2, ..., 9. As an example is

18207 = 7 ∗ 100 + 0 ∗ 101 + 2 ∗ 10² + 8 ∗ 103 + 1 ∗ 104

That is 𝑛𝑛 = 4 and 𝑎𝑎0 = 7, 𝑎𝑎1 = 0, 𝑎𝑎2 = 2, 𝑎𝑎3 = 8 and 𝑎𝑎4 = 1.

Wee say therefore that the decimal system is a positional number system with base 10. This
presentation of the numbers can immediately be generalized to other bases, and actually there is a
number system for any natural number greater than 1. As an example the 60-number system
mentioned above is a system where the base number is 60.

Wee say therefore that the decimal system is a positional number system with base 10. This
presentation of the numbers can immediately be generalized to other bases, and actually there
is a number system for any natural number greater than 1. As an example the 60-number
system mentioned above is a system where the base number is 60.

THE BINARY NUMBER SYSTEM

The binary number system is simply a positional number system with base 2. Thus, it is only
necessary with two symbols, and here are used 0 and 1. A number could, for instance be

111

The binary number system

The binary number system is simply a positional number system with base 2. Thus, it is only
necessary with two symbols, and here are used 0 and 1. A number could, for instance be

𝑡𝑡 = ∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
2𝑖𝑖

where 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all are 0 or 1. If 𝑛𝑛 = 7 and

𝑎𝑎0 = 1
𝑎𝑎1 = 0
𝑎𝑎2 = 0
𝑎𝑎3 = 0
𝑎𝑎4 = 1
𝑎𝑎5 = 1
𝑎𝑎6 = 0
𝑎𝑎7 = 1

is

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

This number is also written as 𝑡𝑡 = 101100012 where the last number 2 tells that it is a number from
the 2-number system. As you can see, the 2-number system is in principle completly equivalent to the
10-number system, where a number is presented as a sequence of symbols - 10 symbols in 10-number
system and 2 symbols in the 2-number system - and the numbers value is determined by the symbols
position. The difference is that a symbol is interpreted as a power af 2 instead of a power of 10, and as
such is the binary system simpler, since a given power of 2 either is included in the number (the
symbol is 1) or it is not (the symbol is 0).

If you look at the above construction, it is easy to determine the value of a number in the 2-number
system by a simple calculation of powers of 2:

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20
= 128 + 32 + 16 + 1 = 177

To compare the two systems, please note the following:

02 = 010 1002 = 410 10002 = 810 11002 = 1210
12 = 110 1012 = 410 10012 = 910 11012 = 1310
102 = 210 1102 = 610 10102 = 1010 11102 = 1410
112 = 310 1112 = 710 10112 = 1110 11112 = 1510

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 5: FILES AND JAVA IO

163

FInal example

where

111

The binary number system

The binary number system is simply a positional number system with base 2. Thus, it is only
necessary with two symbols, and here are used 0 and 1. A number could, for instance be

𝑡𝑡 = ∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
2𝑖𝑖

where 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all are 0 or 1. If 𝑛𝑛 = 7 and

𝑎𝑎0 = 1
𝑎𝑎1 = 0
𝑎𝑎2 = 0
𝑎𝑎3 = 0
𝑎𝑎4 = 1
𝑎𝑎5 = 1
𝑎𝑎6 = 0
𝑎𝑎7 = 1

is

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

This number is also written as 𝑡𝑡 = 101100012 where the last number 2 tells that it is a number from
the 2-number system. As you can see, the 2-number system is in principle completly equivalent to the
10-number system, where a number is presented as a sequence of symbols - 10 symbols in 10-number
system and 2 symbols in the 2-number system - and the numbers value is determined by the symbols
position. The difference is that a symbol is interpreted as a power af 2 instead of a power of 10, and as
such is the binary system simpler, since a given power of 2 either is included in the number (the
symbol is 1) or it is not (the symbol is 0).

If you look at the above construction, it is easy to determine the value of a number in the 2-number
system by a simple calculation of powers of 2:

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20
= 128 + 32 + 16 + 1 = 177

To compare the two systems, please note the following:

02 = 010 1002 = 410 10002 = 810 11002 = 1210
12 = 110 1012 = 410 10012 = 910 11012 = 1310
102 = 210 1102 = 610 10102 = 1010 11102 = 1410
112 = 310 1112 = 710 10112 = 1110 11112 = 1510

 all are 0 or 1. If n = 7 and

111

The binary number system

The binary number system is simply a positional number system with base 2. Thus, it is only
necessary with two symbols, and here are used 0 and 1. A number could, for instance be

𝑡𝑡 = ∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
2𝑖𝑖

where 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all are 0 or 1. If 𝑛𝑛 = 7 and

𝑎𝑎0 = 1
𝑎𝑎1 = 0
𝑎𝑎2 = 0
𝑎𝑎3 = 0
𝑎𝑎4 = 1
𝑎𝑎5 = 1
𝑎𝑎6 = 0
𝑎𝑎7 = 1

is

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

This number is also written as 𝑡𝑡 = 101100012 where the last number 2 tells that it is a number from
the 2-number system. As you can see, the 2-number system is in principle completly equivalent to the
10-number system, where a number is presented as a sequence of symbols - 10 symbols in 10-number
system and 2 symbols in the 2-number system - and the numbers value is determined by the symbols
position. The difference is that a symbol is interpreted as a power af 2 instead of a power of 10, and as
such is the binary system simpler, since a given power of 2 either is included in the number (the
symbol is 1) or it is not (the symbol is 0).

If you look at the above construction, it is easy to determine the value of a number in the 2-number
system by a simple calculation of powers of 2:

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20
= 128 + 32 + 16 + 1 = 177

To compare the two systems, please note the following:

02 = 010 1002 = 410 10002 = 810 11002 = 1210
12 = 110 1012 = 410 10012 = 910 11012 = 1310
102 = 210 1102 = 610 10102 = 1010 11102 = 1410
112 = 310 1112 = 710 10112 = 1110 11112 = 1510

This number is also written as

111

The binary number system

The binary number system is simply a positional number system with base 2. Thus, it is only
necessary with two symbols, and here are used 0 and 1. A number could, for instance be

𝑡𝑡 = ∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
2𝑖𝑖

where 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all are 0 or 1. If 𝑛𝑛 = 7 and

𝑎𝑎0 = 1
𝑎𝑎1 = 0
𝑎𝑎2 = 0
𝑎𝑎3 = 0
𝑎𝑎4 = 1
𝑎𝑎5 = 1
𝑎𝑎6 = 0
𝑎𝑎7 = 1

is

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

This number is also written as 𝑡𝑡 = 101100012 where the last number 2 tells that it is a number from
the 2-number system. As you can see, the 2-number system is in principle completly equivalent to the
10-number system, where a number is presented as a sequence of symbols - 10 symbols in 10-number
system and 2 symbols in the 2-number system - and the numbers value is determined by the symbols
position. The difference is that a symbol is interpreted as a power af 2 instead of a power of 10, and as
such is the binary system simpler, since a given power of 2 either is included in the number (the
symbol is 1) or it is not (the symbol is 0).

If you look at the above construction, it is easy to determine the value of a number in the 2-number
system by a simple calculation of powers of 2:

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20
= 128 + 32 + 16 + 1 = 177

To compare the two systems, please note the following:

02 = 010 1002 = 410 10002 = 810 11002 = 1210
12 = 110 1012 = 410 10012 = 910 11012 = 1310
102 = 210 1102 = 610 10102 = 1010 11102 = 1410
112 = 310 1112 = 710 10112 = 1110 11112 = 1510

 where the last number 2 tells that it is a
number from the 2-number system. As you can see, the 2-number system is in principle
completly equivalent to the 10-number system, where a number is presented as a sequence
of symbols – 10 symbols in 10-number system and 2 symbols in the 2-number system – and
the numbers value is determined by the symbols position. The difference is that a symbol
is interpreted as a power af 2 instead of a power of 10, and as such is the binary system
simpler, since a given power of 2 either is included in the number (the symbol is 1) or it
is not (the symbol is 0).

If you look at the above construction, it is easy to determine the value of a number in the
2-number system by a simple calculation of powers of 2:

111

The binary number system

The binary number system is simply a positional number system with base 2. Thus, it is only
necessary with two symbols, and here are used 0 and 1. A number could, for instance be

𝑡𝑡 = ∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
2𝑖𝑖

where 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all are 0 or 1. If 𝑛𝑛 = 7 and

𝑎𝑎0 = 1
𝑎𝑎1 = 0
𝑎𝑎2 = 0
𝑎𝑎3 = 0
𝑎𝑎4 = 1
𝑎𝑎5 = 1
𝑎𝑎6 = 0
𝑎𝑎7 = 1

is

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

This number is also written as 𝑡𝑡 = 101100012 where the last number 2 tells that it is a number from
the 2-number system. As you can see, the 2-number system is in principle completly equivalent to the
10-number system, where a number is presented as a sequence of symbols - 10 symbols in 10-number
system and 2 symbols in the 2-number system - and the numbers value is determined by the symbols
position. The difference is that a symbol is interpreted as a power af 2 instead of a power of 10, and as
such is the binary system simpler, since a given power of 2 either is included in the number (the
symbol is 1) or it is not (the symbol is 0).

If you look at the above construction, it is easy to determine the value of a number in the 2-number
system by a simple calculation of powers of 2:

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20
= 128 + 32 + 16 + 1 = 177

To compare the two systems, please note the following:

02 = 010 1002 = 410 10002 = 810 11002 = 1210
12 = 110 1012 = 410 10012 = 910 11012 = 1310
102 = 210 1102 = 610 10102 = 1010 11102 = 1410
112 = 310 1112 = 710 10112 = 1110 11112 = 1510

To compare the two systems, please note the following:

111

The binary number system

The binary number system is simply a positional number system with base 2. Thus, it is only
necessary with two symbols, and here are used 0 and 1. A number could, for instance be

𝑡𝑡 = ∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
2𝑖𝑖

where 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 all are 0 or 1. If 𝑛𝑛 = 7 and

𝑎𝑎0 = 1
𝑎𝑎1 = 0
𝑎𝑎2 = 0
𝑎𝑎3 = 0
𝑎𝑎4 = 1
𝑎𝑎5 = 1
𝑎𝑎6 = 0
𝑎𝑎7 = 1

is

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

This number is also written as 𝑡𝑡 = 101100012 where the last number 2 tells that it is a number from
the 2-number system. As you can see, the 2-number system is in principle completly equivalent to the
10-number system, where a number is presented as a sequence of symbols - 10 symbols in 10-number
system and 2 symbols in the 2-number system - and the numbers value is determined by the symbols
position. The difference is that a symbol is interpreted as a power af 2 instead of a power of 10, and as
such is the binary system simpler, since a given power of 2 either is included in the number (the
symbol is 1) or it is not (the symbol is 0).

If you look at the above construction, it is easy to determine the value of a number in the 2-number
system by a simple calculation of powers of 2:

𝑡𝑡 = 1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20
= 128 + 32 + 16 + 1 = 177

To compare the two systems, please note the following:

02 = 010 1002 = 410 10002 = 810 11002 = 1210
12 = 110 1012 = 410 10012 = 910 11012 = 1310
102 = 210 1102 = 610 10102 = 1010 11102 = 1410
112 = 310 1112 = 710 10112 = 1110 11112 = 1510

You can thereof immediately see that the numbers in the binary system takes up more space
than numbers in the decimal system.

JAVA 5: FILES AND JAVA IO

164

FInal example

Below are some examples of positive integers written in the 2-number system, and how to
convert those numbers to the 10-number system:

112

You can thereof immediately see that the numbers in the binary system takes up more space than
numbers in the decimal system.

Below are some examples of positive integers written in the 2-number system, and how to convert
those numbers to the 10-number system:

1110000111110 = 212 + 211 + 210 + 25 + 24 + 23 + 22 + 21

= 4096 + 2048 + 1024 + 32 + 16 + 8 + 4 + 2 = 7230

1111111111 = 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 1023

1110000001 = 512 + 256 + 128 + 1 = 897

10000000000 = 210 = 1024

To determine the value of a binary number - or in other words to convert it to the decimal system - is
simple and is just a question to remember the powers of 2. The other way to convert a number in the
10-number system to a binary number requires a little more.

Given a number, for example 2423, one can determine the largest power of 2 that is less than or equal
to the number. It is 211 = 2048 and

2423 = 211 + 375

The largest power of 2 which is less than or equal to 375 is 2⁸ = 256. That is

2423 = 211 + 375 = 211 + 28 + 119

The largest power of 2 which is less than or equal to 119 is 2⁶ = 64 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55

The largest power of 2 which is less than or equal to 55 is 2⁵ = 32 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55 = 211 + 28 + 26 + 25 + 23

To resume, and you will find:

2423 = 211 + 28 + 26 + 25 + 24 + 22 + 21 + 20 = 1001011101112

That is, to convert a decimal number to a binary number you all the time subtracts the maximum
power of 2 and continue until you get 0 or 1.

Below is another example:

To determine the value of a binary number – or in other words to convert it to the decimal
system – is simple and is just a question to remember the powers of 2. The other way to
convert a number in the 10-number system to a binary number requires a little more.

Given a number, for example 2423, one can determine the largest power of 2 that is less
than or equal to the number. It is 211 = 2048 and

112

You can thereof immediately see that the numbers in the binary system takes up more space than
numbers in the decimal system.

Below are some examples of positive integers written in the 2-number system, and how to convert
those numbers to the 10-number system:

1110000111110 = 212 + 211 + 210 + 25 + 24 + 23 + 22 + 21

= 4096 + 2048 + 1024 + 32 + 16 + 8 + 4 + 2 = 7230

1111111111 = 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 1023

1110000001 = 512 + 256 + 128 + 1 = 897

10000000000 = 210 = 1024

To determine the value of a binary number - or in other words to convert it to the decimal system - is
simple and is just a question to remember the powers of 2. The other way to convert a number in the
10-number system to a binary number requires a little more.

Given a number, for example 2423, one can determine the largest power of 2 that is less than or equal
to the number. It is 211 = 2048 and

2423 = 211 + 375

The largest power of 2 which is less than or equal to 375 is 2⁸ = 256. That is

2423 = 211 + 375 = 211 + 28 + 119

The largest power of 2 which is less than or equal to 119 is 2⁶ = 64 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55

The largest power of 2 which is less than or equal to 55 is 2⁵ = 32 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55 = 211 + 28 + 26 + 25 + 23

To resume, and you will find:

2423 = 211 + 28 + 26 + 25 + 24 + 22 + 21 + 20 = 1001011101112

That is, to convert a decimal number to a binary number you all the time subtracts the maximum
power of 2 and continue until you get 0 or 1.

Below is another example:

The largest power of 2 which is less than or equal to 375 is 28 = 256. That is

112

You can thereof immediately see that the numbers in the binary system takes up more space than
numbers in the decimal system.

Below are some examples of positive integers written in the 2-number system, and how to convert
those numbers to the 10-number system:

1110000111110 = 212 + 211 + 210 + 25 + 24 + 23 + 22 + 21

= 4096 + 2048 + 1024 + 32 + 16 + 8 + 4 + 2 = 7230

1111111111 = 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 1023

1110000001 = 512 + 256 + 128 + 1 = 897

10000000000 = 210 = 1024

To determine the value of a binary number - or in other words to convert it to the decimal system - is
simple and is just a question to remember the powers of 2. The other way to convert a number in the
10-number system to a binary number requires a little more.

Given a number, for example 2423, one can determine the largest power of 2 that is less than or equal
to the number. It is 211 = 2048 and

2423 = 211 + 375

The largest power of 2 which is less than or equal to 375 is 2⁸ = 256. That is

2423 = 211 + 375 = 211 + 28 + 119

The largest power of 2 which is less than or equal to 119 is 2⁶ = 64 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55

The largest power of 2 which is less than or equal to 55 is 2⁵ = 32 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55 = 211 + 28 + 26 + 25 + 23

To resume, and you will find:

2423 = 211 + 28 + 26 + 25 + 24 + 22 + 21 + 20 = 1001011101112

That is, to convert a decimal number to a binary number you all the time subtracts the maximum
power of 2 and continue until you get 0 or 1.

Below is another example:

The largest power of 2 which is less than or equal to 119 is 26 = 64 and

112

You can thereof immediately see that the numbers in the binary system takes up more space than
numbers in the decimal system.

Below are some examples of positive integers written in the 2-number system, and how to convert
those numbers to the 10-number system:

1110000111110 = 212 + 211 + 210 + 25 + 24 + 23 + 22 + 21

= 4096 + 2048 + 1024 + 32 + 16 + 8 + 4 + 2 = 7230

1111111111 = 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 1023

1110000001 = 512 + 256 + 128 + 1 = 897

10000000000 = 210 = 1024

To determine the value of a binary number - or in other words to convert it to the decimal system - is
simple and is just a question to remember the powers of 2. The other way to convert a number in the
10-number system to a binary number requires a little more.

Given a number, for example 2423, one can determine the largest power of 2 that is less than or equal
to the number. It is 211 = 2048 and

2423 = 211 + 375

The largest power of 2 which is less than or equal to 375 is 2⁸ = 256. That is

2423 = 211 + 375 = 211 + 28 + 119

The largest power of 2 which is less than or equal to 119 is 2⁶ = 64 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55

The largest power of 2 which is less than or equal to 55 is 2⁵ = 32 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55 = 211 + 28 + 26 + 25 + 23

To resume, and you will find:

2423 = 211 + 28 + 26 + 25 + 24 + 22 + 21 + 20 = 1001011101112

That is, to convert a decimal number to a binary number you all the time subtracts the maximum
power of 2 and continue until you get 0 or 1.

Below is another example:

The largest power of 2 which is less than or equal to 55 is 25 = 32 and

112

You can thereof immediately see that the numbers in the binary system takes up more space than
numbers in the decimal system.

Below are some examples of positive integers written in the 2-number system, and how to convert
those numbers to the 10-number system:

1110000111110 = 212 + 211 + 210 + 25 + 24 + 23 + 22 + 21

= 4096 + 2048 + 1024 + 32 + 16 + 8 + 4 + 2 = 7230

1111111111 = 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 1023

1110000001 = 512 + 256 + 128 + 1 = 897

10000000000 = 210 = 1024

To determine the value of a binary number - or in other words to convert it to the decimal system - is
simple and is just a question to remember the powers of 2. The other way to convert a number in the
10-number system to a binary number requires a little more.

Given a number, for example 2423, one can determine the largest power of 2 that is less than or equal
to the number. It is 211 = 2048 and

2423 = 211 + 375

The largest power of 2 which is less than or equal to 375 is 2⁸ = 256. That is

2423 = 211 + 375 = 211 + 28 + 119

The largest power of 2 which is less than or equal to 119 is 2⁶ = 64 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55

The largest power of 2 which is less than or equal to 55 is 2⁵ = 32 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55 = 211 + 28 + 26 + 25 + 23

To resume, and you will find:

2423 = 211 + 28 + 26 + 25 + 24 + 22 + 21 + 20 = 1001011101112

That is, to convert a decimal number to a binary number you all the time subtracts the maximum
power of 2 and continue until you get 0 or 1.

Below is another example:

To resume, and you will find:

112

You can thereof immediately see that the numbers in the binary system takes up more space than
numbers in the decimal system.

Below are some examples of positive integers written in the 2-number system, and how to convert
those numbers to the 10-number system:

1110000111110 = 212 + 211 + 210 + 25 + 24 + 23 + 22 + 21

= 4096 + 2048 + 1024 + 32 + 16 + 8 + 4 + 2 = 7230

1111111111 = 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 1023

1110000001 = 512 + 256 + 128 + 1 = 897

10000000000 = 210 = 1024

To determine the value of a binary number - or in other words to convert it to the decimal system - is
simple and is just a question to remember the powers of 2. The other way to convert a number in the
10-number system to a binary number requires a little more.

Given a number, for example 2423, one can determine the largest power of 2 that is less than or equal
to the number. It is 211 = 2048 and

2423 = 211 + 375

The largest power of 2 which is less than or equal to 375 is 2⁸ = 256. That is

2423 = 211 + 375 = 211 + 28 + 119

The largest power of 2 which is less than or equal to 119 is 2⁶ = 64 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55

The largest power of 2 which is less than or equal to 55 is 2⁵ = 32 and

2423 = 211 + 375 = 211 + 28 + 119 = 211 + 28 + 26 + 55 = 211 + 28 + 26 + 25 + 23

To resume, and you will find:

2423 = 211 + 28 + 26 + 25 + 24 + 22 + 21 + 20 = 1001011101112

That is, to convert a decimal number to a binary number you all the time subtracts the maximum
power of 2 and continue until you get 0 or 1.

Below is another example:

That is, to convert a decimal number to a binary number you all the time subtracts the
maximum power of 2 and continue until you get 0 or 1.

JAVA 5: FILES AND JAVA IO

165

FInal example

165

Below is another example:

113

265 = 28 + 9 = 28 + 23 + 1 = 1000010012

The method is basically simple, but in practice and especially for large numbers, it can be difficult to
determine the powers of 2 that you needs. Below is a little more direct way, where you constantly
divide by 2:

265 : 100100001
132
 66
 33
 16
 8
 4
 2
 1
 0

26510 = 1000010012

You divide by 2 (equivalent to halving the number), and you continues with that until the result is 0. In
each division there is a residue that is either 0 or 1. This residue is written after the colon. When
finished - quotient is 0 - the bits after the colon is the binary representation in reverse order - that is the
most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but the operations
are simple and consists of determine the half of a number and where the remainder is 0 or 1.

2423 : 111011101001
1211
 605
 302
 151
 75
 37
 18
 9
 4
 2
 1
 0

242310 = 1001011101112

Note that it is easy to calculate whether the result is correct.

The method is basically simple, but in practice and especially for large numbers, it can be
difficult to determine the powers of 2 that you needs. Below is a little more direct way,
where you constantly divide by 2:

JAVA 5: FILES AND JAVA IO

165

FINAL ExAmpLE

165

That is, to convert a decimal number to a binary number you all the time subtracts the
maximum power of 2 and continue until you get 0 or 1.

Below is another example:

113

265 = 28 + 9 = 28 + 23 + 1 = 1000010012

The method is basically simple, but in practice and especially for large numbers, it can be difficult to
determine the powers of 2 that you needs. Below is a little more direct way, where you constantly
divide by 2:

265 : 100100001
132
 66
 33
 16
 8
 4
 2
 1
 0

26510 = 1000010012

You divide by 2 (equivalent to halving the number), and you continues with that until the result is 0. In
each division there is a residue that is either 0 or 1. This residue is written after the colon. When
finished - quotient is 0 - the bits after the colon is the binary representation in reverse order - that is the
most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but the operations
are simple and consists of determine the half of a number and where the remainder is 0 or 1.

2423 : 111011101001
1211
 605
 302
 151
 75
 37
 18
 9
 4
 2
 1
 0

242310 = 1001011101112

Note that it is easy to calculate whether the result is correct.

The method is basically simple, but in practice and especially for large numbers, it can be
difficult to determine the powers of 2 that you needs. Below is a little more direct way,
where you constantly divide by 2:

265 : 100100001
132
 66
 33
 16
 8
 4
 2
 1
 0

American online
LIGS University

 ▶ enroll by September 30th, 2014 and

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 5: FILES AND JAVA IO

166

FInal example

113

265 = 28 + 9 = 28 + 23 + 1 = 1000010012

The method is basically simple, but in practice and especially for large numbers, it can be difficult to
determine the powers of 2 that you needs. Below is a little more direct way, where you constantly
divide by 2:

265 : 100100001
132
 66
 33
 16
 8
 4
 2
 1
 0

26510 = 1000010012

You divide by 2 (equivalent to halving the number), and you continues with that until the result is 0. In
each division there is a residue that is either 0 or 1. This residue is written after the colon. When
finished - quotient is 0 - the bits after the colon is the binary representation in reverse order - that is the
most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but the operations
are simple and consists of determine the half of a number and where the remainder is 0 or 1.

2423 : 111011101001
1211
 605
 302
 151
 75
 37
 18
 9
 4
 2
 1
 0

242310 = 1001011101112

Note that it is easy to calculate whether the result is correct.

You divide by 2 (equivalent to halving the number), and you continues with that until the
result is 0. In each division there is a residue that is either 0 or 1. This residue is written
after the colon. When finished – quotient is 0 – the bits after the colon is the binary
representation in reverse order – that is the most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but
the operations are simple and consists of determine the half of a number and where the
remainder is 0 or 1.

JAVA 5: FILES AND JAVA IO

166

FINAL ExAmpLE

113

265 = 28 + 9 = 28 + 23 + 1 = 1000010012

The method is basically simple, but in practice and especially for large numbers, it can be difficult to
determine the powers of 2 that you needs. Below is a little more direct way, where you constantly
divide by 2:

265 : 100100001
132
 66
 33
 16
 8
 4
 2
 1
 0

26510 = 1000010012

You divide by 2 (equivalent to halving the number), and you continues with that until the result is 0. In
each division there is a residue that is either 0 or 1. This residue is written after the colon. When
finished - quotient is 0 - the bits after the colon is the binary representation in reverse order - that is the
most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but the operations
are simple and consists of determine the half of a number and where the remainder is 0 or 1.

2423 : 111011101001
1211
 605
 302
 151
 75
 37
 18
 9
 4
 2
 1
 0

242310 = 1001011101112

Note that it is easy to calculate whether the result is correct.

You divide by 2 (equivalent to halving the number), and you continues with that until the
result is 0. In each division there is a residue that is either 0 or 1. This residue is written
after the colon. When finished – quotient is 0 – the bits after the colon is the binary
representation in reverse order – that is the most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but
the operations are simple and consists of determine the half of a number and where the
remainder is 0 or 1.

2423 : 111011101001
1211
 605
 302
 151
 75
 37
 18
 9
 4
 2
 1
 0

113

265 = 28 + 9 = 28 + 23 + 1 = 1000010012

The method is basically simple, but in practice and especially for large numbers, it can be difficult to
determine the powers of 2 that you needs. Below is a little more direct way, where you constantly
divide by 2:

265 : 100100001
132
 66
 33
 16
 8
 4
 2
 1
 0

26510 = 1000010012

You divide by 2 (equivalent to halving the number), and you continues with that until the result is 0. In
each division there is a residue that is either 0 or 1. This residue is written after the colon. When
finished - quotient is 0 - the bits after the colon is the binary representation in reverse order - that is the
most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but the operations
are simple and consists of determine the half of a number and where the remainder is 0 or 1.

2423 : 111011101001
1211
 605
 302
 151
 75
 37
 18
 9
 4
 2
 1
 0

242310 = 1001011101112

Note that it is easy to calculate whether the result is correct.

Note that it is easy to calculate whether the result is correct.

THE HEXADECIMAL SYSTEM

With reference to the above it is easy to define the hexadecimal system or 16-number system
because it is a number system where the base or radix is 16, for example

114

The hexadecimal system

With reference to the above it is easy to define the hexadecimal system or 16-number system because
it is a number system where the base or radix is 16, for example

32716 = 3 ∗ 162 + 2 ∗ 16 + 7 = 80710

Again, it is just a question of the individual symbols positions means something different than in the
decimal system.

However, there is one problem, since the 16-number system requires 16 symbols, and for this applies
the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can then be interpretated as in
the following table:

HEX DEC BIN HEX DEC BIN HEX DEC BIN HEX DEC BIN
0 0 0000 4 4 0100 8 8 1000 C 12 1100
1 1 0001 5 5 0101 9 9 1001 D 13 1101
2 2 0010 6 6 0110 A 10 1010 E 14 1110
3 3 0011 7 7 0111 B 11 1011 F 15 1111

It is easy to convert a hexadecimal number to the decimal system, and is just a case of simple
arithmetic. Below are some examples:

1𝐴𝐴𝐴𝐴3𝐸𝐸𝐸𝐸16 = 163 + 10 ∗ 162 + 3 ∗ 16 + 14 = 871810

𝐵𝐵𝐵𝐵003216 = 11 ∗ 163 + 3 ∗ 16 + 2 = 72094610

2𝐸𝐸𝐸𝐸16 = 2 ∗ 16 + 14 = 4610

𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴16 = 10 ∗ 165 + 11 ∗ 164 + 12 ∗ 163 + 13 ∗ 162 + 13 ∗ 16 + 15 = 1129253110

The interesting thing about the 16-number system viewed from a computer is that 16 is a power of 2:
16 = 2⁴. There are 16 symbols, and each of these symbols can be precisely expressed binary with 4
bits (see table above). This means that it is extremely simple to convert a hexadecimal number to a
binary number, then one simply replaces each hexadecimal symbol with its corresponding binary
representation as 4 bits:

𝐴𝐴𝐴𝐴3𝐵𝐵𝐵𝐵216 = 10100011101100102

12316 = 0001001000112 = 1001000112

when preceded by 0s has no effect on the value of the number.

Converting the other way - from binary to hexadecimal - is similarly simple. The binary digits are
arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding hexadecimal

Again, it is just a question of the individual symbols positions means something different
than in the decimal system.

113

265 = 28 + 9 = 28 + 23 + 1 = 1000010012

The method is basically simple, but in practice and especially for large numbers, it can be difficult to
determine the powers of 2 that you needs. Below is a little more direct way, where you constantly
divide by 2:

265 : 100100001
132
 66
 33
 16
 8
 4
 2
 1
 0

26510 = 1000010012

You divide by 2 (equivalent to halving the number), and you continues with that until the result is 0. In
each division there is a residue that is either 0 or 1. This residue is written after the colon. When
finished - quotient is 0 - the bits after the colon is the binary representation in reverse order - that is the
most significant bit at the end.

This method is really not so much simpler than the first, the division may be long, but the operations
are simple and consists of determine the half of a number and where the remainder is 0 or 1.

2423 : 111011101001
1211
 605
 302
 151
 75
 37
 18
 9
 4
 2
 1
 0

242310 = 1001011101112

Note that it is easy to calculate whether the result is correct.

Note that it is easy to calculate whether the result is correct.

THE HEXADECIMAL SYSTEM

With reference to the above it is easy to define the hexadecimal system or 16-number system
because it is a number system where the base or radix is 16, for example

114

The hexadecimal system

With reference to the above it is easy to define the hexadecimal system or 16-number system because
it is a number system where the base or radix is 16, for example

32716 = 3 ∗ 162 + 2 ∗ 16 + 7 = 80710

Again, it is just a question of the individual symbols positions means something different than in the
decimal system.

However, there is one problem, since the 16-number system requires 16 symbols, and for this applies
the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can then be interpretated as in
the following table:

HEX DEC BIN HEX DEC BIN HEX DEC BIN HEX DEC BIN
0 0 0000 4 4 0100 8 8 1000 C 12 1100
1 1 0001 5 5 0101 9 9 1001 D 13 1101
2 2 0010 6 6 0110 A 10 1010 E 14 1110
3 3 0011 7 7 0111 B 11 1011 F 15 1111

It is easy to convert a hexadecimal number to the decimal system, and is just a case of simple
arithmetic. Below are some examples:

1𝐴𝐴3𝐸𝐸16 = 163 + 10 ∗ 162 + 3 ∗ 16 + 14 = 871810

𝐵𝐵003216 = 11 ∗ 163 + 3 ∗ 16 + 2 = 72094610

2𝐸𝐸16 = 2 ∗ 16 + 14 = 4610

𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴16 = 10 ∗ 165 + 11 ∗ 164 + 12 ∗ 163 + 13 ∗ 162 + 13 ∗ 16 + 15 = 1129253110

The interesting thing about the 16-number system viewed from a computer is that 16 is a power of 2:
16 = 2⁴. There are 16 symbols, and each of these symbols can be precisely expressed binary with 4
bits (see table above). This means that it is extremely simple to convert a hexadecimal number to a
binary number, then one simply replaces each hexadecimal symbol with its corresponding binary
representation as 4 bits:

𝐴𝐴3𝐵𝐵216 = 10100011101100102

12316 = 0001001000112 = 1001000112

when preceded by 0s has no effect on the value of the number.

Converting the other way - from binary to hexadecimal - is similarly simple. The binary digits are
arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding hexadecimal

Again, it is just a question of the individual symbols positions means something different
than in the decimal system.

JAVA 5: FILES AND JAVA IO

167

FInal example

However, there is one problem, since the 16-number system requires 16 symbols, and for
this applies the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can
then be interpretated as in the following table:

JAVA 5: FILES AND JAVA IO

167

FINAL ExAmpLE

However, there is one problem, since the 16-number system requires 16 symbols, and for
this applies the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can
then be interpretated as in the following table:

HEX DEC BIN HEX DEC BIN HEX DEC BIN HEX DEC BIN

0 0 0000 4 4 0100 8 8 1000 C 12 1100

1 1 0001 5 5 0101 9 9 1001 D 13 1101

2 2 0010 6 6 0110 A 10 1010 E 14 1110

3 3 0011 7 7 0111 B 11 1011 F 15 1111

It is easy to convert a hexadecimal number to the decimal system, and is just a case of
simple arithmetic. Below are some examples:

114

The hexadecimal system

With reference to the above it is easy to define the hexadecimal system or 16-number system because
it is a number system where the base or radix is 16, for example

32716 = 3 ∗ 162 + 2 ∗ 16 + 7 = 80710

Again, it is just a question of the individual symbols positions means something different than in the
decimal system.

However, there is one problem, since the 16-number system requires 16 symbols, and for this applies
the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can then be interpretated as in
the following table:

HEX DEC BIN HEX DEC BIN HEX DEC BIN HEX DEC BIN
0 0 0000 4 4 0100 8 8 1000 C 12 1100
1 1 0001 5 5 0101 9 9 1001 D 13 1101
2 2 0010 6 6 0110 A 10 1010 E 14 1110
3 3 0011 7 7 0111 B 11 1011 F 15 1111

It is easy to convert a hexadecimal number to the decimal system, and is just a case of simple
arithmetic. Below are some examples:

1𝐴𝐴𝐴𝐴3𝐸𝐸𝐸𝐸16 = 163 + 10 ∗ 162 + 3 ∗ 16 + 14 = 871810

𝐵𝐵𝐵𝐵003216 = 11 ∗ 163 + 3 ∗ 16 + 2 = 72094610

2𝐸𝐸𝐸𝐸16 = 2 ∗ 16 + 14 = 4610

𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴16 = 10 ∗ 165 + 11 ∗ 164 + 12 ∗ 163 + 13 ∗ 162 + 13 ∗ 16 + 15 = 1129253110

The interesting thing about the 16-number system viewed from a computer is that 16 is a power of 2:
16 = 2⁴. There are 16 symbols, and each of these symbols can be precisely expressed binary with 4
bits (see table above). This means that it is extremely simple to convert a hexadecimal number to a
binary number, then one simply replaces each hexadecimal symbol with its corresponding binary
representation as 4 bits:

𝐴𝐴𝐴𝐴3𝐵𝐵𝐵𝐵216 = 10100011101100102

12316 = 0001001000112 = 1001000112

when preceded by 0s has no effect on the value of the number.

Converting the other way - from binary to hexadecimal - is similarly simple. The binary digits are
arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding hexadecimal

The interesting thing about the 16-number system viewed from a computer is that 16 is
a power of 2: 16 = 24. There are 16 symbols, and each of these symbols can be precisely
expressed binary with 4 bits (see table above). This means that it is extremely simple to
convert a hexadecimal number to a binary number, then one simply replaces each hexadecimal
symbol with its corresponding binary representation as 4 bits:

114

The hexadecimal system

With reference to the above it is easy to define the hexadecimal system or 16-number system because
it is a number system where the base or radix is 16, for example

32716 = 3 ∗ 162 + 2 ∗ 16 + 7 = 80710

Again, it is just a question of the individual symbols positions means something different than in the
decimal system.

However, there is one problem, since the 16-number system requires 16 symbols, and for this applies
the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can then be interpretated as in
the following table:

HEX DEC BIN HEX DEC BIN HEX DEC BIN HEX DEC BIN
0 0 0000 4 4 0100 8 8 1000 C 12 1100
1 1 0001 5 5 0101 9 9 1001 D 13 1101
2 2 0010 6 6 0110 A 10 1010 E 14 1110
3 3 0011 7 7 0111 B 11 1011 F 15 1111

It is easy to convert a hexadecimal number to the decimal system, and is just a case of simple
arithmetic. Below are some examples:

1𝐴𝐴𝐴𝐴3𝐸𝐸𝐸𝐸16 = 163 + 10 ∗ 162 + 3 ∗ 16 + 14 = 871810

𝐵𝐵𝐵𝐵003216 = 11 ∗ 163 + 3 ∗ 16 + 2 = 72094610

2𝐸𝐸𝐸𝐸16 = 2 ∗ 16 + 14 = 4610

𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴16 = 10 ∗ 165 + 11 ∗ 164 + 12 ∗ 163 + 13 ∗ 162 + 13 ∗ 16 + 15 = 1129253110

The interesting thing about the 16-number system viewed from a computer is that 16 is a power of 2:
16 = 2⁴. There are 16 symbols, and each of these symbols can be precisely expressed binary with 4
bits (see table above). This means that it is extremely simple to convert a hexadecimal number to a
binary number, then one simply replaces each hexadecimal symbol with its corresponding binary
representation as 4 bits:

𝐴𝐴𝐴𝐴3𝐵𝐵𝐵𝐵216 = 10100011101100102

12316 = 0001001000112 = 1001000112

when preceded by 0s has no effect on the value of the number.

Converting the other way - from binary to hexadecimal - is similarly simple. The binary digits are
arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding hexadecimal

when preceded by 0s has no effect on the value of the number.

Converting the other way – from binary to hexadecimal – is similarly simple. The binary digits
are arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding
hexadecimal symbol:

115

symbol:

10011101010111102 = 1001110101011110 = 9𝐴𝐴𝐴𝐴5𝐸𝐸𝐸𝐸16

11100001010112 = 1110000101011 = 1𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵16

You can thus conclude that conversion between the binary number system and the hexadecimal system
is extremely simple, and in fact it is the same, because the hexadecimal system is merely a shorter
representation of the binary numbers. The binary number system is simple - at least seen from a
machine, but for us humans, it is difficult to grasp and remember long sequences of 0 and 1. This is
where the hexadecimal system comes into play, as it may represent sequences of 0 and 1 in a short
way that is much easier for us humans both to read and remember.

Above, I mentioned three number systems and the conversion rules between these systems can be
illustrated as follows:

Here you should note that I have not shown any method to convert from decimal to hexadecimal.
However, you can immediately use the division method, which has been used when converting from
decimal to binary, simply you must divide by 16 instead of 2. In practice it may be a bit difficult to
divide by 16 - if it is done manually - and the method has only limited interest. Should you convert a
decimal number to hexadecimal, it is easiest to convert the number to binary and from there to a
hexadecimal number.

You often hears that a computer work binary, and what you mean by this is, that everything in a
computer is represented as binary digits - or perhaps more accurately as sequences of 0 and 1. The
reason for that is that it technically is simple to represent two states in a stable and simple manner, for
example as two voltage levels, 0 volt may represents 1, while the 5 volts could mean 0. The important
thing is that, technically it is easily separate the two voltage levels and in a safe way to determine
whether a unit represents 0 or 1.

Internally in a computer the smallest unit that directly can be accessd is a byte, which is a bit pattern
consisting of 8 bits. Exactly is the machine's RAM memory a large table of 8 bit patterns. If you have
to specify the exact content of such a memory cell in the machine's memory, you specify 8 bits, for
example

01000001

How it is interpreted depends on the program that refers the storage cell, but interpreted it as a binary

It is easy to convert a hexadecimal number to the decimal system, and is just a case of
simple arithmetic. Below are some examples:

114

The hexadecimal system

With reference to the above it is easy to define the hexadecimal system or 16-number system because
it is a number system where the base or radix is 16, for example

32716 = 3 ∗ 162 + 2 ∗ 16 + 7 = 80710

Again, it is just a question of the individual symbols positions means something different than in the
decimal system.

However, there is one problem, since the 16-number system requires 16 symbols, and for this applies
the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can then be interpretated as in
the following table:

HEX DEC BIN HEX DEC BIN HEX DEC BIN HEX DEC BIN
0 0 0000 4 4 0100 8 8 1000 C 12 1100
1 1 0001 5 5 0101 9 9 1001 D 13 1101
2 2 0010 6 6 0110 A 10 1010 E 14 1110
3 3 0011 7 7 0111 B 11 1011 F 15 1111

It is easy to convert a hexadecimal number to the decimal system, and is just a case of simple
arithmetic. Below are some examples:

1𝐴𝐴3𝐸𝐸16 = 163 + 10 ∗ 162 + 3 ∗ 16 + 14 = 871810

𝐵𝐵003216 = 11 ∗ 163 + 3 ∗ 16 + 2 = 72094610

2𝐸𝐸16 = 2 ∗ 16 + 14 = 4610

𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴16 = 10 ∗ 165 + 11 ∗ 164 + 12 ∗ 163 + 13 ∗ 162 + 13 ∗ 16 + 15 = 1129253110

The interesting thing about the 16-number system viewed from a computer is that 16 is a power of 2:
16 = 2⁴. There are 16 symbols, and each of these symbols can be precisely expressed binary with 4
bits (see table above). This means that it is extremely simple to convert a hexadecimal number to a
binary number, then one simply replaces each hexadecimal symbol with its corresponding binary
representation as 4 bits:

𝐴𝐴3𝐵𝐵216 = 10100011101100102

12316 = 0001001000112 = 1001000112

when preceded by 0s has no effect on the value of the number.

Converting the other way - from binary to hexadecimal - is similarly simple. The binary digits are
arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding hexadecimal

The interesting thing about the 16-number system viewed from a computer is that 16 is
a power of 2: 16 = 24. There are 16 symbols, and each of these symbols can be precisely
expressed binary with 4 bits (see table above). This means that it is extremely simple to
convert a hexadecimal number to a binary number, then one simply replaces each hexadecimal
symbol with its corresponding binary representation as 4 bits:

114

The hexadecimal system

With reference to the above it is easy to define the hexadecimal system or 16-number system because
it is a number system where the base or radix is 16, for example

32716 = 3 ∗ 162 + 2 ∗ 16 + 7 = 80710

Again, it is just a question of the individual symbols positions means something different than in the
decimal system.

However, there is one problem, since the 16-number system requires 16 symbols, and for this applies
the 10 digits and the first 6 letters: A, B, C, D, E and F, and the symbols can then be interpretated as in
the following table:

HEX DEC BIN HEX DEC BIN HEX DEC BIN HEX DEC BIN
0 0 0000 4 4 0100 8 8 1000 C 12 1100
1 1 0001 5 5 0101 9 9 1001 D 13 1101
2 2 0010 6 6 0110 A 10 1010 E 14 1110
3 3 0011 7 7 0111 B 11 1011 F 15 1111

It is easy to convert a hexadecimal number to the decimal system, and is just a case of simple
arithmetic. Below are some examples:

1𝐴𝐴3𝐸𝐸16 = 163 + 10 ∗ 162 + 3 ∗ 16 + 14 = 871810

𝐵𝐵003216 = 11 ∗ 163 + 3 ∗ 16 + 2 = 72094610

2𝐸𝐸16 = 2 ∗ 16 + 14 = 4610

𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴16 = 10 ∗ 165 + 11 ∗ 164 + 12 ∗ 163 + 13 ∗ 162 + 13 ∗ 16 + 15 = 1129253110

The interesting thing about the 16-number system viewed from a computer is that 16 is a power of 2:
16 = 2⁴. There are 16 symbols, and each of these symbols can be precisely expressed binary with 4
bits (see table above). This means that it is extremely simple to convert a hexadecimal number to a
binary number, then one simply replaces each hexadecimal symbol with its corresponding binary
representation as 4 bits:

𝐴𝐴3𝐵𝐵216 = 10100011101100102

12316 = 0001001000112 = 1001000112

when preceded by 0s has no effect on the value of the number.

Converting the other way - from binary to hexadecimal - is similarly simple. The binary digits are
arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding hexadecimal

when preceded by 0s has no effect on the value of the number.

Converting the other way – from binary to hexadecimal – is similarly simple. The binary digits
are arranged into groups of 4 bits, and each 4 bits group is converted to the corresponding
hexadecimal symbol:

115

symbol:

10011101010111102 = 1001110101011110 = 9𝐷𝐷5𝐸𝐸16

11100001010112 = 1110000101011 = 1𝐶𝐶2𝐵𝐵16

You can thus conclude that conversion between the binary number system and the hexadecimal system
is extremely simple, and in fact it is the same, because the hexadecimal system is merely a shorter
representation of the binary numbers. The binary number system is simple - at least seen from a
machine, but for us humans, it is difficult to grasp and remember long sequences of 0 and 1. This is
where the hexadecimal system comes into play, as it may represent sequences of 0 and 1 in a short
way that is much easier for us humans both to read and remember.

Above, I mentioned three number systems and the conversion rules between these systems can be
illustrated as follows:

Here you should note that I have not shown any method to convert from decimal to hexadecimal.
However, you can immediately use the division method, which has been used when converting from
decimal to binary, simply you must divide by 16 instead of 2. In practice it may be a bit difficult to
divide by 16 - if it is done manually - and the method has only limited interest. Should you convert a
decimal number to hexadecimal, it is easiest to convert the number to binary and from there to a
hexadecimal number.

You often hears that a computer work binary, and what you mean by this is, that everything in a
computer is represented as binary digits - or perhaps more accurately as sequences of 0 and 1. The
reason for that is that it technically is simple to represent two states in a stable and simple manner, for
example as two voltage levels, 0 volt may represents 1, while the 5 volts could mean 0. The important
thing is that, technically it is easily separate the two voltage levels and in a safe way to determine
whether a unit represents 0 or 1.

Internally in a computer the smallest unit that directly can be accessd is a byte, which is a bit pattern
consisting of 8 bits. Exactly is the machine's RAM memory a large table of 8 bit patterns. If you have
to specify the exact content of such a memory cell in the machine's memory, you specify 8 bits, for
example

01000001

How it is interpreted depends on the program that refers the storage cell, but interpreted it as a binary

JAVA 5: FILES AND JAVA IO

168

FInal example

168

You can thus conclude that conversion between the binary number system and the
hexadecimal system is extremely simple, and in fact it is the same, because the hexadecimal
system is merely a shorter representation of the binary numbers. The binary number system
is simple – at least seen from a machine, but for us humans, it is difficult to grasp and
remember long sequences of 0 and 1. This is where the hexadecimal system comes into
play, as it may represent sequences of 0 and 1 in a short way that is much easier for us
humans both to read and remember.

Above, I mentioned three number systems and the conversion rules between these systems
can be illustrated as follows:

http://s.bookboon.com/GTca

JAVA 5: FILES AND JAVA IO

169

FInal example

Here you should note that I have not shown any method to convert from decimal to
hexadecimal. However, you can immediately use the division method, which has been used
when converting from decimal to binary, simply you must divide by 16 instead of 2. In
practice it may be a bit difficult to divide by 16 – if it is done manually – and the method
has only limited interest. Should you convert a decimal number to hexadecimal, it is easiest
to convert the number to binary and from there to a hexadecimal number.

You often hears that a computer work binary, and what you mean by this is, that everything
in a computer is represented as binary digits – or perhaps more accurately as sequences of 0
and 1. The reason for that is that it technically is simple to represent two states in a stable
and simple manner, for example as two voltage levels, 0 volt may represents 1, while the
5 volts could mean 0. The important thing is that, technically it is easily separate the two
voltage levels and in a safe way to determine whether a unit represents 0 or 1.

Internally in a computer the smallest unit that directly can be accessd is a byte, which is a
bit pattern consisting of 8 bits. Exactly is the machine’s RAM memory a large table of 8 bit
patterns. If you have to specify the exact content of such a memory cell in the machine’s
memory, you specify 8 bits, for example

JAVA 5: FILES AND JAVA IO

169

FINAL ExAmpLE

Here you should note that I have not shown any method to convert from decimal to
hexadecimal. However, you can immediately use the division method, which has been used
when converting from decimal to binary, simply you must divide by 16 instead of 2. In
practice it may be a bit difficult to divide by 16 – if it is done manually – and the method
has only limited interest. Should you convert a decimal number to hexadecimal, it is easiest
to convert the number to binary and from there to a hexadecimal number.

You often hears that a computer work binary, and what you mean by this is, that everything
in a computer is represented as binary digits – or perhaps more accurately as sequences of 0
and 1. The reason for that is that it technically is simple to represent two states in a stable
and simple manner, for example as two voltage levels, 0 volt may represents 1, while the
5 volts could mean 0. The important thing is that, technically it is easily separate the two
voltage levels and in a safe way to determine whether a unit represents 0 or 1.

Internally in a computer the smallest unit that directly can be accessd is a byte, which is a
bit pattern consisting of 8 bits. Exactly is the machine’s RAM memory a large table of 8 bit
patterns. If you have to specify the exact content of such a memory cell in the machine’s
memory, you specify 8 bits, for example

01000001

How it is interpreted depends on the program that refers the storage cell, but interpreted
it as a binary number, it is the number 65. This number could also be used as a code for
the letter A, and a program could thus choose instead of interpreting the above bit pattern
as an A.

A computer will always internally represent data as a bit pattern – not necessarily 8 bits,
but often 16 or 32, and perhaps even more bits. These bit patterns are difficult to handle
for us humans: They are hard to write, and they are hard to remember. This is where the
hexadecimal numbers come in, that as the hexadecimal numbers in reality is just a short
representation of binary numbers, so they are often chosen to show the binary values for
us people in hexadecimal form. The above bit pattern may also be written as hexadecimal

41

As a further example. Consider the number

28319

How it is interpreted depends on the program that refers the storage cell, but interpreted
it as a binary number, it is the number 65. This number could also be used as a code for
the letter A, and a program could thus choose instead of interpreting the above bit pattern
as an A.

A computer will always internally represent data as a bit pattern – not necessarily 8 bits,
but often 16 or 32, and perhaps even more bits. These bit patterns are difficult to handle
for us humans: They are hard to write, and they are hard to remember. This is where the
hexadecimal numbers come in, that as the hexadecimal numbers in reality is just a short
representation of binary numbers, so they are often chosen to show the binary values for
us people in hexadecimal form. The above bit pattern may also be written as hexadecimal

JAVA 5: FILES AND JAVA IO

169

FINAL ExAmpLE

Here you should note that I have not shown any method to convert from decimal to
hexadecimal. However, you can immediately use the division method, which has been used
when converting from decimal to binary, simply you must divide by 16 instead of 2. In
practice it may be a bit difficult to divide by 16 – if it is done manually – and the method
has only limited interest. Should you convert a decimal number to hexadecimal, it is easiest
to convert the number to binary and from there to a hexadecimal number.

You often hears that a computer work binary, and what you mean by this is, that everything
in a computer is represented as binary digits – or perhaps more accurately as sequences of 0
and 1. The reason for that is that it technically is simple to represent two states in a stable
and simple manner, for example as two voltage levels, 0 volt may represents 1, while the
5 volts could mean 0. The important thing is that, technically it is easily separate the two
voltage levels and in a safe way to determine whether a unit represents 0 or 1.

Internally in a computer the smallest unit that directly can be accessd is a byte, which is a
bit pattern consisting of 8 bits. Exactly is the machine’s RAM memory a large table of 8 bit
patterns. If you have to specify the exact content of such a memory cell in the machine’s
memory, you specify 8 bits, for example

01000001

How it is interpreted depends on the program that refers the storage cell, but interpreted
it as a binary number, it is the number 65. This number could also be used as a code for
the letter A, and a program could thus choose instead of interpreting the above bit pattern
as an A.

A computer will always internally represent data as a bit pattern – not necessarily 8 bits,
but often 16 or 32, and perhaps even more bits. These bit patterns are difficult to handle
for us humans: They are hard to write, and they are hard to remember. This is where the
hexadecimal numbers come in, that as the hexadecimal numbers in reality is just a short
representation of binary numbers, so they are often chosen to show the binary values for
us people in hexadecimal form. The above bit pattern may also be written as hexadecimal

41

As a further example. Consider the number

28319

As a further example. Consider the number

28319

JAVA 5: FILES AND JAVA IO

170

FInal example

If you converts the number to the binary you get:

JAVA 5: FILES AND JAVA IO

170

FINAL ExAmpLE

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

116

number, it is the number 65. This number could also be used as a code for the letter A, and a program
could thus choose instead of interpreting the above bit pattern as an A.

A computer will always internally represent data as a bit pattern - not necessarily 8 bits, but often 16
or 32, and perhaps even more bits. These bit patterns are difficult to handle for us humans: They are
hard to write, and they are hard to remember. This is where the hexadecimal numbers come in, that as
the hexadecimal numbers in reality is just a short representation of binary numbers, so they are often
chosen to show the binary values for us people in hexadecimal form. The above bit pattern may also
be written as hexadecimal

41

As a further example. Consider the number

28319

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

2831910 = 1101110100111112

Such a binary number are difficult to remember and hard to convey to others while its hexadecimal
representation is much simpler to work with:

1101110100111112 = 110111010011111 = 6𝐸𝐸𝐸𝐸9𝐹𝐹𝐹𝐹16

The integers

When introduced to the whole numbers in mathematics, you learn that the whole numbers is an
infinite set. A computer is a machine and on a machine there is nothing that is infinite, and specifically

Such a binary number are difficult to remember and hard to convey to others while its
hexadecimal representation is much simpler to work with:

116

number, it is the number 65. This number could also be used as a code for the letter A, and a program
could thus choose instead of interpreting the above bit pattern as an A.

A computer will always internally represent data as a bit pattern - not necessarily 8 bits, but often 16
or 32, and perhaps even more bits. These bit patterns are difficult to handle for us humans: They are
hard to write, and they are hard to remember. This is where the hexadecimal numbers come in, that as
the hexadecimal numbers in reality is just a short representation of binary numbers, so they are often
chosen to show the binary values for us people in hexadecimal form. The above bit pattern may also
be written as hexadecimal

41

As a further example. Consider the number

28319

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

2831910 = 1101110100111112

Such a binary number are difficult to remember and hard to convey to others while its hexadecimal
representation is much simpler to work with:

1101110100111112 = 110111010011111 = 6𝐸𝐸𝐸𝐸9𝐹𝐹𝐹𝐹16

The integers

When introduced to the whole numbers in mathematics, you learn that the whole numbers is an
infinite set. A computer is a machine and on a machine there is nothing that is infinite, and specifically

THE INTEGERS

When introduced to the whole numbers in mathematics, you learn that the whole numbers
is an infinite set. A computer is a machine and on a machine there is nothing that is infinite,
and specifically it means that that a computer can represent only a subset of the whole
numbers. As mentioned above, the smallest directly addressable unit is a byte consisting of
8 bits. Since a bit can be either 0 or 1, a byte can represent 28 = 256 different bit patterns,
and if you only have 1 byte available, it offers 256 different numbers. It is too little, and
therefore a machine groups several bytes in a word. If you group 2 bytes, wee say that the
unit has a word length of 2 bytes or 16 bits. Similarly, if you group the 4 bytes, you get a
word length of 4 bytes, or 32 bits, and the machine is working with 32-bit integers.

Previously, it was common to use 16-bit integer words, in order to have 16 bits available
to an integer. As long as you talk about non-negative integers, the last 15 bits are used for
the number, while the first is always 0. The number is then represented as a binary number,
and as an example is the number 219 represented as:

0000000011011011

116

number, it is the number 65. This number could also be used as a code for the letter A, and a program
could thus choose instead of interpreting the above bit pattern as an A.

A computer will always internally represent data as a bit pattern - not necessarily 8 bits, but often 16
or 32, and perhaps even more bits. These bit patterns are difficult to handle for us humans: They are
hard to write, and they are hard to remember. This is where the hexadecimal numbers come in, that as
the hexadecimal numbers in reality is just a short representation of binary numbers, so they are often
chosen to show the binary values for us people in hexadecimal form. The above bit pattern may also
be written as hexadecimal

41

As a further example. Consider the number

28319

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

2831910 = 1101110100111112

Such a binary number are difficult to remember and hard to convey to others while its hexadecimal
representation is much simpler to work with:

1101110100111112 = 110111010011111 = 6𝐸𝐸9𝐹𝐹16

The integers

When introduced to the whole numbers in mathematics, you learn that the whole numbers is an
infinite set. A computer is a machine and on a machine there is nothing that is infinite, and specifically

Such a binary number are difficult to remember and hard to convey to others while its
hexadecimal representation is much simpler to work with:

116

number, it is the number 65. This number could also be used as a code for the letter A, and a program
could thus choose instead of interpreting the above bit pattern as an A.

A computer will always internally represent data as a bit pattern - not necessarily 8 bits, but often 16
or 32, and perhaps even more bits. These bit patterns are difficult to handle for us humans: They are
hard to write, and they are hard to remember. This is where the hexadecimal numbers come in, that as
the hexadecimal numbers in reality is just a short representation of binary numbers, so they are often
chosen to show the binary values for us people in hexadecimal form. The above bit pattern may also
be written as hexadecimal

41

As a further example. Consider the number

28319

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

2831910 = 1101110100111112

Such a binary number are difficult to remember and hard to convey to others while its hexadecimal
representation is much simpler to work with:

1101110100111112 = 110111010011111 = 6𝐸𝐸9𝐹𝐹16

The integers

When introduced to the whole numbers in mathematics, you learn that the whole numbers is an
infinite set. A computer is a machine and on a machine there is nothing that is infinite, and specifically

THE INTEGERS

When introduced to the whole numbers in mathematics, you learn that the whole numbers
is an infinite set. A computer is a machine and on a machine there is nothing that is infinite,
and specifically it means that that a computer can represent only a subset of the whole
numbers. As mentioned above, the smallest directly addressable unit is a byte consisting of
8 bits. Since a bit can be either 0 or 1, a byte can represent 28 = 256 different bit patterns,
and if you only have 1 byte available, it offers 256 different numbers. It is too little, and
therefore a machine groups several bytes in a word. If you group 2 bytes, wee say that the
unit has a word length of 2 bytes or 16 bits. Similarly, if you group the 4 bytes, you get a
word length of 4 bytes, or 32 bits, and the machine is working with 32-bit integers.

Previously, it was common to use 16-bit integer words, in order to have 16 bits available
to an integer. As long as you talk about non-negative integers, the last 15 bits are used for
the number, while the first is always 0. The number is then represented as a binary number,
and as an example is the number 219 represented as:

JAVA 5: FILES AND JAVA IO

170

FINAL ExAmpLE

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

116

number, it is the number 65. This number could also be used as a code for the letter A, and a program
could thus choose instead of interpreting the above bit pattern as an A.

A computer will always internally represent data as a bit pattern - not necessarily 8 bits, but often 16
or 32, and perhaps even more bits. These bit patterns are difficult to handle for us humans: They are
hard to write, and they are hard to remember. This is where the hexadecimal numbers come in, that as
the hexadecimal numbers in reality is just a short representation of binary numbers, so they are often
chosen to show the binary values for us people in hexadecimal form. The above bit pattern may also
be written as hexadecimal

41

As a further example. Consider the number

28319

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

2831910 = 1101110100111112

Such a binary number are difficult to remember and hard to convey to others while its hexadecimal
representation is much simpler to work with:

1101110100111112 = 110111010011111 = 6𝐸𝐸𝐸𝐸9𝐹𝐹𝐹𝐹16

The integers

When introduced to the whole numbers in mathematics, you learn that the whole numbers is an
infinite set. A computer is a machine and on a machine there is nothing that is infinite, and specifically

Such a binary number are difficult to remember and hard to convey to others while its
hexadecimal representation is much simpler to work with:

116

number, it is the number 65. This number could also be used as a code for the letter A, and a program
could thus choose instead of interpreting the above bit pattern as an A.

A computer will always internally represent data as a bit pattern - not necessarily 8 bits, but often 16
or 32, and perhaps even more bits. These bit patterns are difficult to handle for us humans: They are
hard to write, and they are hard to remember. This is where the hexadecimal numbers come in, that as
the hexadecimal numbers in reality is just a short representation of binary numbers, so they are often
chosen to show the binary values for us people in hexadecimal form. The above bit pattern may also
be written as hexadecimal

41

As a further example. Consider the number

28319

If you converts the number to the binary you get:

28319 : 111110010111011
14159
 7079
 3539
 1769
 884
 442
 221
 110
 55
 27
 13
 6
 3
 1
 0

2831910 = 1101110100111112

Such a binary number are difficult to remember and hard to convey to others while its hexadecimal
representation is much simpler to work with:

1101110100111112 = 110111010011111 = 6𝐸𝐸𝐸𝐸9𝐹𝐹𝐹𝐹16

The integers

When introduced to the whole numbers in mathematics, you learn that the whole numbers is an
infinite set. A computer is a machine and on a machine there is nothing that is infinite, and specifically

THE INTEGERS

When introduced to the whole numbers in mathematics, you learn that the whole numbers
is an infinite set. A computer is a machine and on a machine there is nothing that is infinite,
and specifically it means that that a computer can represent only a subset of the whole
numbers. As mentioned above, the smallest directly addressable unit is a byte consisting of
8 bits. Since a bit can be either 0 or 1, a byte can represent 28 = 256 different bit patterns,
and if you only have 1 byte available, it offers 256 different numbers. It is too little, and
therefore a machine groups several bytes in a word. If you group 2 bytes, wee say that the
unit has a word length of 2 bytes or 16 bits. Similarly, if you group the 4 bytes, you get a
word length of 4 bytes, or 32 bits, and the machine is working with 32-bit integers.

Previously, it was common to use 16-bit integer words, in order to have 16 bits available
to an integer. As long as you talk about non-negative integers, the last 15 bits are used for
the number, while the first is always 0. The number is then represented as a binary number,
and as an example is the number 219 represented as:

0000000011011011

JAVA 5: FILES AND JAVA IO

171

FInal example

171

(you can easily calculate that it is the number 219). As another example the number 2890
is represented as:

JAVA 5: FILES AND JAVA IO

171

FINAL ExAmpLE

171

(you can easily calculate that it is the number 219). As another example the number 2890
is represented as:

00000101101001010

This representation allows to represents the following non-negative integers:

0000000000000000 0
0000000000000001 1
0000000000000010 2
0000000000000011 3
0000000000000100 4
....
0000000011011011 219
....
0111111111111111 32767

This representation allows to represents the following non-negative integers:

JAVA 5: FILES AND JAVA IO

171

FINAL ExAmpLE

171

(you can easily calculate that it is the number 219). As another example the number 2890
is represented as:

00000101101001010

This representation allows to represents the following non-negative integers:

0000000000000000 0
0000000000000001 1
0000000000000010 2
0000000000000011 3
0000000000000100 4
....
0000000011011011 219
....
0111111111111111 32767

 .

http://s.bookboon.com/AlcatelLucent

JAVA 5: FILES AND JAVA IO

172

FInal example

That is that the largest positive integer is 32767. Note especially that it is the number
215 – 1, and generally the largest number that can be represented by n bits is 2n – 1. The
representation of the non-negative integers on a machine is straightforward and the only
thing that matters is the word length, which determines how large numbers to work with.
Most machines today using a word length of 32 bits for integers, and it means that the
largest positive integer is 231 = 2147483647 thus well over two billions. As an example is
the number 219 represented as

JAVA 5: FILES AND JAVA IO

172

FINAL ExAmpLE

That is that the largest positive integer is 32767. Note especially that it is the number
215 – 1, and generally the largest number that can be represented by n bits is 2n – 1. The
representation of the non-negative integers on a machine is straightforward and the only
thing that matters is the word length, which determines how large numbers to work with.
Most machines today using a word length of 32 bits for integers, and it means that the
largest positive integer is 231 = 2147483647 thus well over two billions. As an example is
the number 219 represented as

00000000000000000000000011011011

on a machine with 32 bit words. You can therefore see the advantages and disadvantages of
a large word length. A large word length means the machine can work with big numbers,
but should you most of the time only work on small numbers, a large word length result
in wasted space, since a large part of the space are just used to 0s.

Sometimes you also uses double-word integers, where you has 64 bits available. The largest
positive integer is then 9223372036854775807 whose binary representation is:

0111

And then to the negative numbers, as is represented by their 2 complement. For not having
to write too long bit patterns, I will start with a word length of 8 bits, that is a byte. Note
that the largest positive integer that can be represented in one byte is

01111111 = 127

Consider as an example the number 97, and in one byte it is represented as the binary
number:

01100001

By a number’s complement wee means the number obtained by inverting all bits, that is,

10011110

This operation is seen from a machine extremely simple and efficient to implement in
hardware and in principle similar to change the voltage level.

on a machine with 32 bit words. You can therefore see the advantages and disadvantages of
a large word length. A large word length means the machine can work with big numbers,
but should you most of the time only work on small numbers, a large word length result
in wasted space, since a large part of the space are just used to 0s.

Sometimes you also uses double-word integers, where you has 64 bits available. The largest
positive integer is then 9223372036854775807 whose binary representation is:

JAVA 5: FILES AND JAVA IO

172

FINAL ExAmpLE

That is that the largest positive integer is 32767. Note especially that it is the number
215 – 1, and generally the largest number that can be represented by n bits is 2n – 1. The
representation of the non-negative integers on a machine is straightforward and the only
thing that matters is the word length, which determines how large numbers to work with.
Most machines today using a word length of 32 bits for integers, and it means that the
largest positive integer is 231 = 2147483647 thus well over two billions. As an example is
the number 219 represented as

00000000000000000000000011011011

on a machine with 32 bit words. You can therefore see the advantages and disadvantages of
a large word length. A large word length means the machine can work with big numbers,
but should you most of the time only work on small numbers, a large word length result
in wasted space, since a large part of the space are just used to 0s.

Sometimes you also uses double-word integers, where you has 64 bits available. The largest
positive integer is then 9223372036854775807 whose binary representation is:

0111

And then to the negative numbers, as is represented by their 2 complement. For not having
to write too long bit patterns, I will start with a word length of 8 bits, that is a byte. Note
that the largest positive integer that can be represented in one byte is

01111111 = 127

Consider as an example the number 97, and in one byte it is represented as the binary
number:

01100001

By a number’s complement wee means the number obtained by inverting all bits, that is,

10011110

This operation is seen from a machine extremely simple and efficient to implement in
hardware and in principle similar to change the voltage level.

And then to the negative numbers, as is represented by their 2 complement. For not having
to write too long bit patterns, I will start with a word length of 8 bits, that is a byte. Note
that the largest positive integer that can be represented in one byte is

JAVA 5: FILES AND JAVA IO

172

FINAL ExAmpLE

That is that the largest positive integer is 32767. Note especially that it is the number
215 – 1, and generally the largest number that can be represented by n bits is 2n – 1. The
representation of the non-negative integers on a machine is straightforward and the only
thing that matters is the word length, which determines how large numbers to work with.
Most machines today using a word length of 32 bits for integers, and it means that the
largest positive integer is 231 = 2147483647 thus well over two billions. As an example is
the number 219 represented as

00000000000000000000000011011011

on a machine with 32 bit words. You can therefore see the advantages and disadvantages of
a large word length. A large word length means the machine can work with big numbers,
but should you most of the time only work on small numbers, a large word length result
in wasted space, since a large part of the space are just used to 0s.

Sometimes you also uses double-word integers, where you has 64 bits available. The largest
positive integer is then 9223372036854775807 whose binary representation is:

0111

And then to the negative numbers, as is represented by their 2 complement. For not having
to write too long bit patterns, I will start with a word length of 8 bits, that is a byte. Note
that the largest positive integer that can be represented in one byte is

01111111 = 127

Consider as an example the number 97, and in one byte it is represented as the binary
number:

01100001

By a number’s complement wee means the number obtained by inverting all bits, that is,

10011110

This operation is seen from a machine extremely simple and efficient to implement in
hardware and in principle similar to change the voltage level.

Consider as an example the number 97, and in one byte it is represented as the binary
number:

JAVA 5: FILES AND JAVA IO

172

FINAL ExAmpLE

That is that the largest positive integer is 32767. Note especially that it is the number
215 – 1, and generally the largest number that can be represented by n bits is 2n – 1. The
representation of the non-negative integers on a machine is straightforward and the only
thing that matters is the word length, which determines how large numbers to work with.
Most machines today using a word length of 32 bits for integers, and it means that the
largest positive integer is 231 = 2147483647 thus well over two billions. As an example is
the number 219 represented as

00000000000000000000000011011011

on a machine with 32 bit words. You can therefore see the advantages and disadvantages of
a large word length. A large word length means the machine can work with big numbers,
but should you most of the time only work on small numbers, a large word length result
in wasted space, since a large part of the space are just used to 0s.

Sometimes you also uses double-word integers, where you has 64 bits available. The largest
positive integer is then 9223372036854775807 whose binary representation is:

0111

And then to the negative numbers, as is represented by their 2 complement. For not having
to write too long bit patterns, I will start with a word length of 8 bits, that is a byte. Note
that the largest positive integer that can be represented in one byte is

01111111 = 127

Consider as an example the number 97, and in one byte it is represented as the binary
number:

01100001

By a number’s complement wee means the number obtained by inverting all bits, that is,

10011110

This operation is seen from a machine extremely simple and efficient to implement in
hardware and in principle similar to change the voltage level.

By a number’s complement wee means the number obtained by inverting all bits, that is,

JAVA 5: FILES AND JAVA IO

172

FINAL ExAmpLE

That is that the largest positive integer is 32767. Note especially that it is the number
215 – 1, and generally the largest number that can be represented by n bits is 2n – 1. The
representation of the non-negative integers on a machine is straightforward and the only
thing that matters is the word length, which determines how large numbers to work with.
Most machines today using a word length of 32 bits for integers, and it means that the
largest positive integer is 231 = 2147483647 thus well over two billions. As an example is
the number 219 represented as

00000000000000000000000011011011

on a machine with 32 bit words. You can therefore see the advantages and disadvantages of
a large word length. A large word length means the machine can work with big numbers,
but should you most of the time only work on small numbers, a large word length result
in wasted space, since a large part of the space are just used to 0s.

Sometimes you also uses double-word integers, where you has 64 bits available. The largest
positive integer is then 9223372036854775807 whose binary representation is:

0111

And then to the negative numbers, as is represented by their 2 complement. For not having
to write too long bit patterns, I will start with a word length of 8 bits, that is a byte. Note
that the largest positive integer that can be represented in one byte is

01111111 = 127

Consider as an example the number 97, and in one byte it is represented as the binary
number:

01100001

By a number’s complement wee means the number obtained by inverting all bits, that is,

10011110

This operation is seen from a machine extremely simple and efficient to implement in
hardware and in principle similar to change the voltage level.
This operation is seen from a machine extremely simple and efficient to implement in
hardware and in principle similar to change the voltage level.

JAVA 5: FILES AND JAVA IO

173

FInal example

A numbers 2 complement is 1 added to its complement and the 2 complement of 97
(= 01100001) is then:

JAVA 5: FILES AND JAVA IO

173

FINAL ExAmpLE

A numbers 2 complement is 1 added to its complement and the 2 complement of 97
(= 01100001) is then:

10011110
 1
10011111

That is the number -97 in an 8-bit unit is represented by the bit pattern

10011111

It may be noted that adding 1 to a binary number can also be implemented very efficiently in
hardware, so the entire operation to determine a number’s 2 complement is highly effective.

As another example, consider the number 28, which in a 8-bit unit is represented as

00011100

Then the representation of -28 is:

11100011
 1
11100100

This calculation may require a little comment about how to adds two binary numbers.
When you adds two decimal numbers, you typical writes the numbers above each other so
that they are aligned with the rear digit. The you adds that the digits from back:

1. if the sum of the two digets is les than the base 10, it is the result
2. else you subtract the base 10 from the sum, and the difference is then the result,

while you get a carry on 1, to be included in the sum of the next two digits

This method can be applied directly to binary numbers (and in principle on any other
number system), and the difference is only that the base number is now 2: The sum at a
particular position is either 0 or 1, and is the sum greater than 1, there will be a carry to
the next position. All options can be illustrated in the following table:

That is the number -97 in an 8-bit unit is represented by the bit pattern

JAVA 5: FILES AND JAVA IO

173

FINAL ExAmpLE

A numbers 2 complement is 1 added to its complement and the 2 complement of 97
(= 01100001) is then:

10011110
 1
10011111

That is the number -97 in an 8-bit unit is represented by the bit pattern

10011111

It may be noted that adding 1 to a binary number can also be implemented very efficiently in
hardware, so the entire operation to determine a number’s 2 complement is highly effective.

As another example, consider the number 28, which in a 8-bit unit is represented as

00011100

Then the representation of -28 is:

11100011
 1
11100100

This calculation may require a little comment about how to adds two binary numbers.
When you adds two decimal numbers, you typical writes the numbers above each other so
that they are aligned with the rear digit. The you adds that the digits from back:

1. if the sum of the two digets is les than the base 10, it is the result
2. else you subtract the base 10 from the sum, and the difference is then the result,

while you get a carry on 1, to be included in the sum of the next two digits

This method can be applied directly to binary numbers (and in principle on any other
number system), and the difference is only that the base number is now 2: The sum at a
particular position is either 0 or 1, and is the sum greater than 1, there will be a carry to
the next position. All options can be illustrated in the following table:

It may be noted that adding 1 to a binary number can also be implemented very efficiently in
hardware, so the entire operation to determine a number’s 2 complement is highly effective.

As another example, consider the number 28, which in a 8-bit unit is represented as

JAVA 5: FILES AND JAVA IO

173

FINAL ExAmpLE

A numbers 2 complement is 1 added to its complement and the 2 complement of 97
(= 01100001) is then:

10011110
 1
10011111

That is the number -97 in an 8-bit unit is represented by the bit pattern

10011111

It may be noted that adding 1 to a binary number can also be implemented very efficiently in
hardware, so the entire operation to determine a number’s 2 complement is highly effective.

As another example, consider the number 28, which in a 8-bit unit is represented as

00011100

Then the representation of -28 is:

11100011
 1
11100100

This calculation may require a little comment about how to adds two binary numbers.
When you adds two decimal numbers, you typical writes the numbers above each other so
that they are aligned with the rear digit. The you adds that the digits from back:

1. if the sum of the two digets is les than the base 10, it is the result
2. else you subtract the base 10 from the sum, and the difference is then the result,

while you get a carry on 1, to be included in the sum of the next two digits

This method can be applied directly to binary numbers (and in principle on any other
number system), and the difference is only that the base number is now 2: The sum at a
particular position is either 0 or 1, and is the sum greater than 1, there will be a carry to
the next position. All options can be illustrated in the following table:

Then the representation of -28 is:

JAVA 5: FILES AND JAVA IO

173

FINAL ExAmpLE

A numbers 2 complement is 1 added to its complement and the 2 complement of 97
(= 01100001) is then:

10011110
 1
10011111

That is the number -97 in an 8-bit unit is represented by the bit pattern

10011111

It may be noted that adding 1 to a binary number can also be implemented very efficiently in
hardware, so the entire operation to determine a number’s 2 complement is highly effective.

As another example, consider the number 28, which in a 8-bit unit is represented as

00011100

Then the representation of -28 is:

11100011
 1
11100100

This calculation may require a little comment about how to adds two binary numbers.
When you adds two decimal numbers, you typical writes the numbers above each other so
that they are aligned with the rear digit. The you adds that the digits from back:

1. if the sum of the two digets is les than the base 10, it is the result
2. else you subtract the base 10 from the sum, and the difference is then the result,

while you get a carry on 1, to be included in the sum of the next two digits

This method can be applied directly to binary numbers (and in principle on any other
number system), and the difference is only that the base number is now 2: The sum at a
particular position is either 0 or 1, and is the sum greater than 1, there will be a carry to
the next position. All options can be illustrated in the following table:

This calculation may require a little comment about how to adds two binary numbers.
When you adds two decimal numbers, you typical writes the numbers above each other so
that they are aligned with the rear digit. The you adds that the digits from back:

1. if the sum of the two digets is les than the base 10, it is the result
2. else you subtract the base 10 from the sum, and the difference is then the result,

while you get a carry on 1, to be included in the sum of the next two digits

This method can be applied directly to binary numbers (and in principle on any other
number system), and the difference is only that the base number is now 2: The sum at a
particular position is either 0 or 1, and is the sum greater than 1, there will be a carry to
the next position. All options can be illustrated in the following table:

JAVA 5: FILES AND JAVA IO

174

FInal example

174

JAVA 5: FILES AND JAVA IO

174

FINAL ExAmpLE

174

Bit 1 Bit 2 Carry before Sum Carry after

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

It is thus a simple matter manually adding binary numbers.It is thus a simple matter manually adding binary numbers.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 5: FILES AND JAVA IO

175

FInal example

If you look at the number representation from a computer, it will look at the first bit, and
from the value of this bit know if is a negative or a non-negative number, and is the first
bit 1, the current software instantly convert the number by take the 2 complement. Actually
it is based on the following very important observation that if one determines a number’s 2
complement and then again its 2 complement (thus taking the 2 complement twice), then
you come back to the original number. For example is the 2 complement of 28

JAVA 5: FILES AND JAVA IO

175

FINAL ExAmpLE

If you look at the number representation from a computer, it will look at the first bit, and
from the value of this bit know if is a negative or a non-negative number, and is the first
bit 1, the current software instantly convert the number by take the 2 complement. Actually
it is based on the following very important observation that if one determines a number’s 2
complement and then again its 2 complement (thus taking the 2 complement twice), then
you come back to the original number. For example is the 2 complement of 28

11100100

and taking the 2 complement to it again, you get:

11100100
00011011
 1
00011100

that is the number 28.

Consider the number -1. As other negative numbers it is represented by its 2 complement:

00000001
11111110
 1
11111111

That is where all bits is 1.

Consider the bit pattern

10000000

that if interpreted as a number of a computer will be interpreted as a negative number:

10000000
01111111
 1
10000000

and thus the number -128. It means that with a word length of 8 bits, the computer can
work with numbers in the interval [-128; 127], which has excatly 256 different integers.

and taking the 2 complement to it again, you get:

JAVA 5: FILES AND JAVA IO

175

FINAL ExAmpLE

If you look at the number representation from a computer, it will look at the first bit, and
from the value of this bit know if is a negative or a non-negative number, and is the first
bit 1, the current software instantly convert the number by take the 2 complement. Actually
it is based on the following very important observation that if one determines a number’s 2
complement and then again its 2 complement (thus taking the 2 complement twice), then
you come back to the original number. For example is the 2 complement of 28

11100100

and taking the 2 complement to it again, you get:

11100100
00011011
 1
00011100

that is the number 28.

Consider the number -1. As other negative numbers it is represented by its 2 complement:

00000001
11111110
 1
11111111

That is where all bits is 1.

Consider the bit pattern

10000000

that if interpreted as a number of a computer will be interpreted as a negative number:

10000000
01111111
 1
10000000

and thus the number -128. It means that with a word length of 8 bits, the computer can
work with numbers in the interval [-128; 127], which has excatly 256 different integers.

that is the number 28.

Consider the number -1. As other negative numbers it is represented by its 2 complement:

JAVA 5: FILES AND JAVA IO

175

FINAL ExAmpLE

If you look at the number representation from a computer, it will look at the first bit, and
from the value of this bit know if is a negative or a non-negative number, and is the first
bit 1, the current software instantly convert the number by take the 2 complement. Actually
it is based on the following very important observation that if one determines a number’s 2
complement and then again its 2 complement (thus taking the 2 complement twice), then
you come back to the original number. For example is the 2 complement of 28

11100100

and taking the 2 complement to it again, you get:

11100100
00011011
 1
00011100

that is the number 28.

Consider the number -1. As other negative numbers it is represented by its 2 complement:

00000001
11111110
 1
11111111

That is where all bits is 1.

Consider the bit pattern

10000000

that if interpreted as a number of a computer will be interpreted as a negative number:

10000000
01111111
 1
10000000

and thus the number -128. It means that with a word length of 8 bits, the computer can
work with numbers in the interval [-128; 127], which has excatly 256 different integers.

That is where all bits is 1.

Consider the bit pattern

JAVA 5: FILES AND JAVA IO

175

FINAL ExAmpLE

If you look at the number representation from a computer, it will look at the first bit, and
from the value of this bit know if is a negative or a non-negative number, and is the first
bit 1, the current software instantly convert the number by take the 2 complement. Actually
it is based on the following very important observation that if one determines a number’s 2
complement and then again its 2 complement (thus taking the 2 complement twice), then
you come back to the original number. For example is the 2 complement of 28

11100100

and taking the 2 complement to it again, you get:

11100100
00011011
 1
00011100

that is the number 28.

Consider the number -1. As other negative numbers it is represented by its 2 complement:

00000001
11111110
 1
11111111

That is where all bits is 1.

Consider the bit pattern

10000000

that if interpreted as a number of a computer will be interpreted as a negative number:

10000000
01111111
 1
10000000

and thus the number -128. It means that with a word length of 8 bits, the computer can
work with numbers in the interval [-128; 127], which has excatly 256 different integers.

that if interpreted as a number of a computer will be interpreted as a negative number:

JAVA 5: FILES AND JAVA IO

175

FINAL ExAmpLE

If you look at the number representation from a computer, it will look at the first bit, and
from the value of this bit know if is a negative or a non-negative number, and is the first
bit 1, the current software instantly convert the number by take the 2 complement. Actually
it is based on the following very important observation that if one determines a number’s 2
complement and then again its 2 complement (thus taking the 2 complement twice), then
you come back to the original number. For example is the 2 complement of 28

11100100

and taking the 2 complement to it again, you get:

11100100
00011011
 1
00011100

that is the number 28.

Consider the number -1. As other negative numbers it is represented by its 2 complement:

00000001
11111110
 1
11111111

That is where all bits is 1.

Consider the bit pattern

10000000

that if interpreted as a number of a computer will be interpreted as a negative number:

10000000
01111111
 1
10000000

and thus the number -128. It means that with a word length of 8 bits, the computer can
work with numbers in the interval [-128; 127], which has excatly 256 different integers.

and thus the number -128. It means that with a word length of 8 bits, the computer can
work with numbers in the interval [-128; 127], which has excatly 256 different integers.

JAVA 5: FILES AND JAVA IO

176

FInal example

Note that the interval is asymmetric such there is a negative number more than there are
positive numbers. The reason is that there must also be room to the number 0.

I will conclude the examination of the negative numbers with a few examples. Consider
again number 219, which in a binary 16-bit device is represented as

JAVA 5: FILES AND JAVA IO

176

FINAL ExAmpLE

Note that the interval is asymmetric such there is a negative number more than there are
positive numbers. The reason is that there must also be room to the number 0.

I will conclude the examination of the negative numbers with a few examples. Consider
again number 219, which in a binary 16-bit device is represented as

0000000011011011

The representation of -219 can be determined as

1111111100100100
 1
1111111100100101

In a 16-bit device, -1 is represented as

0000000000000001
1111111111111110
 1
1111111111111111

again only by 1 bits. As the above does not depend on the word length, you may notice
that -1 independent of the word length will always be represented as nothing but 1 bits.

Also note what happens if you calculates the 2 complement of 0:

0000000000000000
1111111111111111
 1
0000000000000000

as just again results in 0.

Consider a 16-bit device that contains the number 1000000000000000, that is where the
first bit is 1, but the rest is 0. The machine will interpret this number as a negative number
and determine its 2 complement:

1000000000000000
0111111111111111
 1
1000000000000000

and thus interpret it as -32768. With a word length of 16 bits you can represents the the
integers in the range [-32768; 32767].

The representation of -219 can be determined as

JAVA 5: FILES AND JAVA IO

176

FINAL ExAmpLE

Note that the interval is asymmetric such there is a negative number more than there are
positive numbers. The reason is that there must also be room to the number 0.

I will conclude the examination of the negative numbers with a few examples. Consider
again number 219, which in a binary 16-bit device is represented as

0000000011011011

The representation of -219 can be determined as

1111111100100100
 1
1111111100100101

In a 16-bit device, -1 is represented as

0000000000000001
1111111111111110
 1
1111111111111111

again only by 1 bits. As the above does not depend on the word length, you may notice
that -1 independent of the word length will always be represented as nothing but 1 bits.

Also note what happens if you calculates the 2 complement of 0:

0000000000000000
1111111111111111
 1
0000000000000000

as just again results in 0.

Consider a 16-bit device that contains the number 1000000000000000, that is where the
first bit is 1, but the rest is 0. The machine will interpret this number as a negative number
and determine its 2 complement:

1000000000000000
0111111111111111
 1
1000000000000000

and thus interpret it as -32768. With a word length of 16 bits you can represents the the
integers in the range [-32768; 32767].

In a 16-bit device, -1 is represented as

JAVA 5: FILES AND JAVA IO

176

FINAL ExAmpLE

Note that the interval is asymmetric such there is a negative number more than there are
positive numbers. The reason is that there must also be room to the number 0.

I will conclude the examination of the negative numbers with a few examples. Consider
again number 219, which in a binary 16-bit device is represented as

0000000011011011

The representation of -219 can be determined as

1111111100100100
 1
1111111100100101

In a 16-bit device, -1 is represented as

0000000000000001
1111111111111110
 1
1111111111111111

again only by 1 bits. As the above does not depend on the word length, you may notice
that -1 independent of the word length will always be represented as nothing but 1 bits.

Also note what happens if you calculates the 2 complement of 0:

0000000000000000
1111111111111111
 1
0000000000000000

as just again results in 0.

Consider a 16-bit device that contains the number 1000000000000000, that is where the
first bit is 1, but the rest is 0. The machine will interpret this number as a negative number
and determine its 2 complement:

1000000000000000
0111111111111111
 1
1000000000000000

and thus interpret it as -32768. With a word length of 16 bits you can represents the the
integers in the range [-32768; 32767].

again only by 1 bits. As the above does not depend on the word length, you may notice
that -1 independent of the word length will always be represented as nothing but 1 bits.

Also note what happens if you calculates the 2 complement of 0:

JAVA 5: FILES AND JAVA IO

176

FINAL ExAmpLE

Note that the interval is asymmetric such there is a negative number more than there are
positive numbers. The reason is that there must also be room to the number 0.

I will conclude the examination of the negative numbers with a few examples. Consider
again number 219, which in a binary 16-bit device is represented as

0000000011011011

The representation of -219 can be determined as

1111111100100100
 1
1111111100100101

In a 16-bit device, -1 is represented as

0000000000000001
1111111111111110
 1
1111111111111111

again only by 1 bits. As the above does not depend on the word length, you may notice
that -1 independent of the word length will always be represented as nothing but 1 bits.

Also note what happens if you calculates the 2 complement of 0:

0000000000000000
1111111111111111
 1
0000000000000000

as just again results in 0.

Consider a 16-bit device that contains the number 1000000000000000, that is where the
first bit is 1, but the rest is 0. The machine will interpret this number as a negative number
and determine its 2 complement:

1000000000000000
0111111111111111
 1
1000000000000000

and thus interpret it as -32768. With a word length of 16 bits you can represents the the
integers in the range [-32768; 32767].

as just again results in 0.

Consider a 16-bit device that contains the number 1000000000000000, that is where the
first bit is 1, but the rest is 0. The machine will interpret this number as a negative number
and determine its 2 complement:

JAVA 5: FILES AND JAVA IO

176

FINAL ExAmpLE

Note that the interval is asymmetric such there is a negative number more than there are
positive numbers. The reason is that there must also be room to the number 0.

I will conclude the examination of the negative numbers with a few examples. Consider
again number 219, which in a binary 16-bit device is represented as

0000000011011011

The representation of -219 can be determined as

1111111100100100
 1
1111111100100101

In a 16-bit device, -1 is represented as

0000000000000001
1111111111111110
 1
1111111111111111

again only by 1 bits. As the above does not depend on the word length, you may notice
that -1 independent of the word length will always be represented as nothing but 1 bits.

Also note what happens if you calculates the 2 complement of 0:

0000000000000000
1111111111111111
 1
0000000000000000

as just again results in 0.

Consider a 16-bit device that contains the number 1000000000000000, that is where the
first bit is 1, but the rest is 0. The machine will interpret this number as a negative number
and determine its 2 complement:

1000000000000000
0111111111111111
 1
1000000000000000

and thus interpret it as -32768. With a word length of 16 bits you can represents the the
integers in the range [-32768; 32767].

and thus interpret it as -32768. With a word length of 16 bits you can represents the the
integers in the range [-32768; 32767].

JAVA 5: FILES AND JAVA IO

177

FInal example

177

If the word length is 32 bits, the smallest (negative) number, is

JAVA 5: FILES AND JAVA IO

177

FINAL ExAmpLE

177

If the word length is 32 bits, the smallest (negative) number, is

10000000000000000000000000000000

that is the number -2147483648, and then you get the interval [-2147483648; 2147483647].
With a 64-bit word length the interval is [-9223372036854775808; 9223372036854775807].

If you look at how a modern computer represents negative integers, it’s not the only way
to do it, and there have also been used other methods. Wee uses as mentioned the 2
complement because it is an operation that can be effectively implemented in hardware,
but previously has been used only the complement which is even more effective since it
simply just turns the bits. This provides another problem, however. Consider the number
0 in an 8-bit device:

00000000

If you calculates the number’s complement you get

11111111

that is the number -2147483648, and then you get the interval [-2147483648; 2147483647].
With a 64-bit word length the interval is [-9223372036854775808; 9223372036854775807].

If you look at how a modern computer represents negative integers, it’s not the only way
to do it, and there have also been used other methods. Wee uses as mentioned the 2
complement because it is an operation that can be effectively implemented in hardware,
but previously has been used only the complement which is even more effective since it
simply just turns the bits. This provides another problem, however. Consider the number
0 in an 8-bit device:

JAVA 5: FILES AND JAVA IO

177

FINAL ExAmpLE

177

If the word length is 32 bits, the smallest (negative) number, is

10000000000000000000000000000000

that is the number -2147483648, and then you get the interval [-2147483648; 2147483647].
With a 64-bit word length the interval is [-9223372036854775808; 9223372036854775807].

If you look at how a modern computer represents negative integers, it’s not the only way
to do it, and there have also been used other methods. Wee uses as mentioned the 2
complement because it is an operation that can be effectively implemented in hardware,
but previously has been used only the complement which is even more effective since it
simply just turns the bits. This provides another problem, however. Consider the number
0 in an 8-bit device:

00000000

If you calculates the number’s complement you get

11111111

If you calculates the number’s complement you get

JAVA 5: FILES AND JAVA IO

177

FINAL ExAmpLE

177

If the word length is 32 bits, the smallest (negative) number, is

10000000000000000000000000000000

that is the number -2147483648, and then you get the interval [-2147483648; 2147483647].
With a 64-bit word length the interval is [-9223372036854775808; 9223372036854775807].

If you look at how a modern computer represents negative integers, it’s not the only way
to do it, and there have also been used other methods. Wee uses as mentioned the 2
complement because it is an operation that can be effectively implemented in hardware,
but previously has been used only the complement which is even more effective since it
simply just turns the bits. This provides another problem, however. Consider the number
0 in an 8-bit device:

00000000

If you calculates the number’s complement you get

11111111

http://s.bookboon.com/BI

JAVA 5: FILES AND JAVA IO

178

FInal example

that on the machine vould be interpreted as -0, the result, that according to the basic
math is 0. This means that when you have two representations of the number 0, there is
a problem, which has to be solved in the software, and then complicates the calculations.
It is the reason that computers today anywhere using the 2 complement rather than only
the complement.

COMPLEMENT ARITHMETIC

The goal of this section is to show how the computer uses the above number representation
to calculations. All calculations are performed by the electronics in your computer’s processor,
and from manufacturers of processors it is about developing processors that are as effective
as possible, but also to a competitive in price.

ADDITION

A processor must be able to perform multiple operations, but the main thing is to add two
integers. This section will be based on a processor that can perform addition of two binary
numbers, and let me begin by are few examples to illustrate what can be done by addition
of two binary numbers. Basically, I will count on 8 bits. It is something of a simplification,
but since it does not change anything for the basics, it means that I can illustrate it all
with fewer bits.

First, recall that with 8 bits, only the interval [-128; 127] are provided.

Calculate 73 + 46

The processor must then adds the two binary numbers 01001001 and 00101110:

JAVA 5: FILES AND JAVA IO

178

FINAL ExAmpLE

that on the machine vould be interpreted as -0, the result, that according to the basic
math is 0. This means that when you have two representations of the number 0, there is
a problem, which has to be solved in the software, and then complicates the calculations.
It is the reason that computers today anywhere using the 2 complement rather than only
the complement.

COMPLEMENT ARITHMETIC

The goal of this section is to show how the computer uses the above number representation
to calculations. All calculations are performed by the electronics in your computer’s processor,
and from manufacturers of processors it is about developing processors that are as effective
as possible, but also to a competitive in price.

ADDITION

A processor must be able to perform multiple operations, but the main thing is to add two
integers. This section will be based on a processor that can perform addition of two binary
numbers, and let me begin by are few examples to illustrate what can be done by addition
of two binary numbers. Basically, I will count on 8 bits. It is something of a simplification,
but since it does not change anything for the basics, it means that I can illustrate it all
with fewer bits.

First, recall that with 8 bits, only the interval [-128; 127] are provided.

Calculate 73 + 46

The processor must then adds the two binary numbers 01001001 and 00101110:

00010000
01001001
00101110
01110111

wherein the top row of bits is the carry. It is easy to figure out that the result is the number
119, which is also the correct result.

Calculate 1 + 2

wherein the top row of bits is the carry. It is easy to figure out that the result is the number
119, which is also the correct result.

Calculate 1 + 2

JAVA 5: FILES AND JAVA IO

179

FInal example

This is a simple calculation and the result must be 3:

JAVA 5: FILES AND JAVA IO

179

FINAL ExAmpLE

This is a simple calculation and the result must be 3:

00000000
00000001
00000010
00000011

Calculate 112 + (-43)

112 = 01110000
43 = 00101011

The 2 complement of 43:

00101011
11010100
 1
11010101

-43 = 11010101 and the processor must therefore add the numbers 01110000 and 11010101:

11100000
01110000
11010101
01000101

This means that you get a result that can quickly be converted to 69, which is the correct result.

Perhaps it is not entirely obvious, for if you manual do the above addition you will see that
there is a cary the last time, who apparently just disappears – and actually it do, because there
is no room for it. You can say that you drops a sign bit away because the result was positive.

So we can note that a processor may well add a positive and a negative number.

Calculate 43 + (-112)

112 = 01110000
43 = 00101011

Calculate 112 + (-43)

JAVA 5: FILES AND JAVA IO

179

FINAL ExAmpLE

This is a simple calculation and the result must be 3:

00000000
00000001
00000010
00000011

Calculate 112 + (-43)

112 = 01110000
43 = 00101011

The 2 complement of 43:

00101011
11010100
 1
11010101

-43 = 11010101 and the processor must therefore add the numbers 01110000 and 11010101:

11100000
01110000
11010101
01000101

This means that you get a result that can quickly be converted to 69, which is the correct result.

Perhaps it is not entirely obvious, for if you manual do the above addition you will see that
there is a cary the last time, who apparently just disappears – and actually it do, because there
is no room for it. You can say that you drops a sign bit away because the result was positive.

So we can note that a processor may well add a positive and a negative number.

Calculate 43 + (-112)

112 = 01110000
43 = 00101011

The 2 complement of 43:

JAVA 5: FILES AND JAVA IO

179

FINAL ExAmpLE

This is a simple calculation and the result must be 3:

00000000
00000001
00000010
00000011

Calculate 112 + (-43)

112 = 01110000
43 = 00101011

The 2 complement of 43:

00101011
11010100
 1
11010101

-43 = 11010101 and the processor must therefore add the numbers 01110000 and 11010101:

11100000
01110000
11010101
01000101

This means that you get a result that can quickly be converted to 69, which is the correct result.

Perhaps it is not entirely obvious, for if you manual do the above addition you will see that
there is a cary the last time, who apparently just disappears – and actually it do, because there
is no room for it. You can say that you drops a sign bit away because the result was positive.

So we can note that a processor may well add a positive and a negative number.

Calculate 43 + (-112)

112 = 01110000
43 = 00101011

-43 = 11010101 and the processor must therefore add the numbers 01110000 and 11010101:

JAVA 5: FILES AND JAVA IO

179

FINAL ExAmpLE

This is a simple calculation and the result must be 3:

00000000
00000001
00000010
00000011

Calculate 112 + (-43)

112 = 01110000
43 = 00101011

The 2 complement of 43:

00101011
11010100
 1
11010101

-43 = 11010101 and the processor must therefore add the numbers 01110000 and 11010101:

11100000
01110000
11010101
01000101

This means that you get a result that can quickly be converted to 69, which is the correct result.

Perhaps it is not entirely obvious, for if you manual do the above addition you will see that
there is a cary the last time, who apparently just disappears – and actually it do, because there
is no room for it. You can say that you drops a sign bit away because the result was positive.

So we can note that a processor may well add a positive and a negative number.

Calculate 43 + (-112)

112 = 01110000
43 = 00101011

This means that you get a result that can quickly be converted to 69, which is the correct result.

Perhaps it is not entirely obvious, for if you manual do the above addition you will see that
there is a cary the last time, who apparently just disappears – and actually it do, because there
is no room for it. You can say that you drops a sign bit away because the result was positive.

So we can note that a processor may well add a positive and a negative number.

Calculate 43 + (-112)

JAVA 5: FILES AND JAVA IO

179

FINAL ExAmpLE

This is a simple calculation and the result must be 3:

00000000
00000001
00000010
00000011

Calculate 112 + (-43)

112 = 01110000
43 = 00101011

The 2 complement of 43:

00101011
11010100
 1
11010101

-43 = 11010101 and the processor must therefore add the numbers 01110000 and 11010101:

11100000
01110000
11010101
01000101

This means that you get a result that can quickly be converted to 69, which is the correct result.

Perhaps it is not entirely obvious, for if you manual do the above addition you will see that
there is a cary the last time, who apparently just disappears – and actually it do, because there
is no room for it. You can say that you drops a sign bit away because the result was positive.

So we can note that a processor may well add a positive and a negative number.

Calculate 43 + (-112)

112 = 01110000
43 = 00101011

JAVA 5: FILES AND JAVA IO

180

FInal example

180

The 2 complement to 112:

JAVA 5: FILES AND JAVA IO

180

FINAL ExAmpLE

180

The 2 complement to 112:

01110000
10001111
 1
10010000

-112 = 1001000 and the processor must therefore add the numbers 1001000 and 00101011:

00000000
10010000
00101011
10111011

When the first bit is 1, the result is negative and you have to determine the 2 complement:

10111011
00000100
 1
01000101

-112 = 1001000 and the processor must therefore add the numbers 1001000 and 00101011:

JAVA 5: FILES AND JAVA IO

180

FINAL ExAmpLE

180

The 2 complement to 112:

01110000
10001111
 1
10010000

-112 = 1001000 and the processor must therefore add the numbers 1001000 and 00101011:

00000000
10010000
00101011
10111011

When the first bit is 1, the result is negative and you have to determine the 2 complement:

10111011
00000100
 1
01000101

When the first bit is 1, the result is negative and you have to determine the 2 complement:

JAVA 5: FILES AND JAVA IO

180

FINAL ExAmpLE

180

The 2 complement to 112:

01110000
10001111
 1
10010000

-112 = 1001000 and the processor must therefore add the numbers 1001000 and 00101011:

00000000
10010000
00101011
10111011

When the first bit is 1, the result is negative and you have to determine the 2 complement:

10111011
00000100
 1
01000101

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 5: FILES AND JAVA IO

181

FInal example

It is the number 69, and then the result is -69, which is also correct.

Calculate 73 + 60

JAVA 5: FILES AND JAVA IO

181

FINAL ExAmpLE

It is the number 69, and then the result is -69, which is also correct.

Calculate 73 + 60

73 = 01001001
60 = 00111100

The processor must calculate the sum of 01001001 and 00111100:

11110000
01001001
00111100
10000101

The result is negative, then you have to determine the complement

10000101
01111010
 1
01111011

Converted to decimal it will be the result -123, which is obviously wrong. What you see
here is an example of an overflow: The sum of the two numbers can not be in an 8-bit
device and fall outside the range that can be represented with 8 bits. Note that, when the
addition of the last two digits there was a cary, which was discarded.

Usually makes a processor nothing in such a situation beyond that it delivers a wrong result.
If it is desired to handle this situation, it is up to the software, testing for overflow. If the
processor had to do something, it would be more complex, and it would cost in efficiency
and it is also not so easy to determine what the processor where appropriate should do. It
is not entirely true that the processor is not doing anything. After each addition sets the
processor some status bits, and one of them says, there has been an overflow. There is also
a status bit, which is the last cary and software can thus test whether there is a cary which
is “thrown away”.

It is worth emphasizing that the problem of overflow is not specifically associated with a
word length of 8, but it can occur regardless of the word length used. It is only a question
of adding two numbers that are sufficiently large.

The processor must calculate the sum of 01001001 and 00111100:

JAVA 5: FILES AND JAVA IO

181

FINAL ExAmpLE

It is the number 69, and then the result is -69, which is also correct.

Calculate 73 + 60

73 = 01001001
60 = 00111100

The processor must calculate the sum of 01001001 and 00111100:

11110000
01001001
00111100
10000101

The result is negative, then you have to determine the complement

10000101
01111010
 1
01111011

Converted to decimal it will be the result -123, which is obviously wrong. What you see
here is an example of an overflow: The sum of the two numbers can not be in an 8-bit
device and fall outside the range that can be represented with 8 bits. Note that, when the
addition of the last two digits there was a cary, which was discarded.

Usually makes a processor nothing in such a situation beyond that it delivers a wrong result.
If it is desired to handle this situation, it is up to the software, testing for overflow. If the
processor had to do something, it would be more complex, and it would cost in efficiency
and it is also not so easy to determine what the processor where appropriate should do. It
is not entirely true that the processor is not doing anything. After each addition sets the
processor some status bits, and one of them says, there has been an overflow. There is also
a status bit, which is the last cary and software can thus test whether there is a cary which
is “thrown away”.

It is worth emphasizing that the problem of overflow is not specifically associated with a
word length of 8, but it can occur regardless of the word length used. It is only a question
of adding two numbers that are sufficiently large.

The result is negative, then you have to determine the complement

JAVA 5: FILES AND JAVA IO

181

FINAL ExAmpLE

It is the number 69, and then the result is -69, which is also correct.

Calculate 73 + 60

73 = 01001001
60 = 00111100

The processor must calculate the sum of 01001001 and 00111100:

11110000
01001001
00111100
10000101

The result is negative, then you have to determine the complement

10000101
01111010
 1
01111011

Converted to decimal it will be the result -123, which is obviously wrong. What you see
here is an example of an overflow: The sum of the two numbers can not be in an 8-bit
device and fall outside the range that can be represented with 8 bits. Note that, when the
addition of the last two digits there was a cary, which was discarded.

Usually makes a processor nothing in such a situation beyond that it delivers a wrong result.
If it is desired to handle this situation, it is up to the software, testing for overflow. If the
processor had to do something, it would be more complex, and it would cost in efficiency
and it is also not so easy to determine what the processor where appropriate should do. It
is not entirely true that the processor is not doing anything. After each addition sets the
processor some status bits, and one of them says, there has been an overflow. There is also
a status bit, which is the last cary and software can thus test whether there is a cary which
is “thrown away”.

It is worth emphasizing that the problem of overflow is not specifically associated with a
word length of 8, but it can occur regardless of the word length used. It is only a question
of adding two numbers that are sufficiently large.

Converted to decimal it will be the result -123, which is obviously wrong. What you see
here is an example of an overflow: The sum of the two numbers can not be in an 8-bit
device and fall outside the range that can be represented with 8 bits. Note that, when the
addition of the last two digits there was a cary, which was discarded.

Usually makes a processor nothing in such a situation beyond that it delivers a wrong result.
If it is desired to handle this situation, it is up to the software, testing for overflow. If the
processor had to do something, it would be more complex, and it would cost in efficiency
and it is also not so easy to determine what the processor where appropriate should do. It
is not entirely true that the processor is not doing anything. After each addition sets the
processor some status bits, and one of them says, there has been an overflow. There is also
a status bit, which is the last cary and software can thus test whether there is a cary which
is “thrown away”.

It is worth emphasizing that the problem of overflow is not specifically associated with a
word length of 8, but it can occur regardless of the word length used. It is only a question
of adding two numbers that are sufficiently large.

JAVA 5: FILES AND JAVA IO

182

FInal example

182

32 BITS ADDITION

As a final example, I look at addition of two numbers, but this time with a word length of
32 bits, which better reflects what happens in a real processor. I will look at the calculation

2819316 + 32512819

Actually there is nothing new in relation to the above, except that I should write more bits.

First a converting:

JAVA 5: FILES AND JAVA IO

182

FINAL ExAmpLE

182

32 BITS ADDITION

As a final example, I look at addition of two numbers, but this time with a word length of
32 bits, which better reflects what happens in a real processor. I will look at the calculation

2819316 + 32512819

Actually there is nothing new in relation to the above, except that I should write more bits.

First a converting:

2819316 = 2B04F4 = 00000000001010110000010011110100
32512819 = 1F01B33 = 00000001111100000001101100110011

Then the calculation:

00000011110000000011111111100000
00000000001010110000010011110100
00000001111100000001101100110011
00000010000110110010000000100111

Then the calculation:

JAVA 5: FILES AND JAVA IO

182

FINAL ExAmpLE

182

32 BITS ADDITION

As a final example, I look at addition of two numbers, but this time with a word length of
32 bits, which better reflects what happens in a real processor. I will look at the calculation

2819316 + 32512819

Actually there is nothing new in relation to the above, except that I should write more bits.

First a converting:

2819316 = 2B04F4 = 00000000001010110000010011110100
32512819 = 1F01B33 = 00000001111100000001101100110011

Then the calculation:

00000011110000000011111111100000
00000000001010110000010011110100
00000001111100000001101100110011
00000010000110110010000000100111

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 5: FILES AND JAVA IO

183

FInal example

And so converting the result:

JAVA 5: FILES AND JAVA IO

183

FINAL ExAmpLE

And so converting the result:

00000010000110110010000000100111 = 0000|0010|0001|1011|0010|0000|0010|0111
 = 021B2027
 = 35332135

and it is easy to calculate that the results is correct.

SUBTRACTION

If we now have a machine (a processor) which adds, you also has a machine that can subtract.
Should you subtract two numbers, simply adding the second number’s 2 complement to
the first, and really it’s nothing more than to exploit one of the rules in maths:

a – b = a + (– b)

If we again have a word length of 8 bits, and if you have to calculate 83 – 23 the following
happens when you have to calculate the sum 83 + (-23)

83 = 01010011
23 = 00010111

The complement of 23:

00010111
11101000
 1
11101001

-23 = 11101001

10000110
01010011
11101001
00111100

The result is 00111100 = 60.

As anothe example: Calculate 2819316 – 32512819, when the word length is 32 bits:

 2819316 = 2B04F4 = 00000000001010110000010011110100
32512819 = 1F01B33 = 00000001111100000001101100110011

and it is easy to calculate that the results is correct.

SUBTRACTION

If we now have a machine (a processor) which adds, you also has a machine that can subtract.
Should you subtract two numbers, simply adding the second number’s 2 complement to
the first, and really it’s nothing more than to exploit one of the rules in maths:

a – b = a + (– b)

If we again have a word length of 8 bits, and if you have to calculate 83 – 23 the following
happens when you have to calculate the sum 83 + (-23)

JAVA 5: FILES AND JAVA IO

183

FINAL ExAmpLE

And so converting the result:

00000010000110110010000000100111 = 0000|0010|0001|1011|0010|0000|0010|0111
 = 021B2027
 = 35332135

and it is easy to calculate that the results is correct.

SUBTRACTION

If we now have a machine (a processor) which adds, you also has a machine that can subtract.
Should you subtract two numbers, simply adding the second number’s 2 complement to
the first, and really it’s nothing more than to exploit one of the rules in maths:

a – b = a + (– b)

If we again have a word length of 8 bits, and if you have to calculate 83 – 23 the following
happens when you have to calculate the sum 83 + (-23)

83 = 01010011
23 = 00010111

The complement of 23:

00010111
11101000
 1
11101001

-23 = 11101001

10000110
01010011
11101001
00111100

The result is 00111100 = 60.

As anothe example: Calculate 2819316 – 32512819, when the word length is 32 bits:

 2819316 = 2B04F4 = 00000000001010110000010011110100
32512819 = 1F01B33 = 00000001111100000001101100110011

The complement of 23:

JAVA 5: FILES AND JAVA IO

183

FINAL ExAmpLE

And so converting the result:

00000010000110110010000000100111 = 0000|0010|0001|1011|0010|0000|0010|0111
 = 021B2027
 = 35332135

and it is easy to calculate that the results is correct.

SUBTRACTION

If we now have a machine (a processor) which adds, you also has a machine that can subtract.
Should you subtract two numbers, simply adding the second number’s 2 complement to
the first, and really it’s nothing more than to exploit one of the rules in maths:

a – b = a + (– b)

If we again have a word length of 8 bits, and if you have to calculate 83 – 23 the following
happens when you have to calculate the sum 83 + (-23)

83 = 01010011
23 = 00010111

The complement of 23:

00010111
11101000
 1
11101001

-23 = 11101001

10000110
01010011
11101001
00111100

The result is 00111100 = 60.

As anothe example: Calculate 2819316 – 32512819, when the word length is 32 bits:

 2819316 = 2B04F4 = 00000000001010110000010011110100
32512819 = 1F01B33 = 00000001111100000001101100110011

The result is 00111100 = 60.

As anothe example: Calculate 2819316 – 32512819, when the word length is 32 bits:

JAVA 5: FILES AND JAVA IO

183

FINAL ExAmpLE

And so converting the result:

00000010000110110010000000100111 = 0000|0010|0001|1011|0010|0000|0010|0111
 = 021B2027
 = 35332135

and it is easy to calculate that the results is correct.

SUBTRACTION

If we now have a machine (a processor) which adds, you also has a machine that can subtract.
Should you subtract two numbers, simply adding the second number’s 2 complement to
the first, and really it’s nothing more than to exploit one of the rules in maths:

a – b = a + (– b)

If we again have a word length of 8 bits, and if you have to calculate 83 – 23 the following
happens when you have to calculate the sum 83 + (-23)

83 = 01010011
23 = 00010111

The complement of 23:

00010111
11101000
 1
11101001

-23 = 11101001

10000110
01010011
11101001
00111100

The result is 00111100 = 60.

As anothe example: Calculate 2819316 – 32512819, when the word length is 32 bits:

 2819316 = 2B04F4 = 00000000001010110000010011110100
32512819 = 1F01B33 = 00000001111100000001101100110011

JAVA 5: FILES AND JAVA IO

184

FInal example

The complement to 32512819:

JAVA 5: FILES AND JAVA IO

184

FINAL ExAmpLE

The complement to 32512819:

00000001111100000001101100110011
11111110000011111110010011001100
 1
11111110000011111110010011001101

That is

-32512819 = 11111110000011111110010011001101

Calculation:

00000000000111100000100111111000
00000000001010110000010011110100
11111110000011111110010011001101
11111110001110101110100111000001

The complement of the result:

11111110001110101110100111000001
00000001110001010001011000111110
 1
00000001110001010001011000111111

and the result:

00000001110001010001011000111111 = 0000|0001|1100|0101|0001|0110|0011|1111
 = 01C5163F
 = 29693503

The result is as follows, and it is easy to calculate that it is correctly:

-29693503

The arithmetic as outlined in this section is called complement arithmetic, and as you can
see, it is sufficient to construct a processor that can add. Then at the same time a processor
also can subtract. This is the reasons to implements the representation of negative numbers
by their 2 complement.

That is

JAVA 5: FILES AND JAVA IO

184

FINAL ExAmpLE

The complement to 32512819:

00000001111100000001101100110011
11111110000011111110010011001100
 1
11111110000011111110010011001101

That is

-32512819 = 11111110000011111110010011001101

Calculation:

00000000000111100000100111111000
00000000001010110000010011110100
11111110000011111110010011001101
11111110001110101110100111000001

The complement of the result:

11111110001110101110100111000001
00000001110001010001011000111110
 1
00000001110001010001011000111111

and the result:

00000001110001010001011000111111 = 0000|0001|1100|0101|0001|0110|0011|1111
 = 01C5163F
 = 29693503

The result is as follows, and it is easy to calculate that it is correctly:

-29693503

The arithmetic as outlined in this section is called complement arithmetic, and as you can
see, it is sufficient to construct a processor that can add. Then at the same time a processor
also can subtract. This is the reasons to implements the representation of negative numbers
by their 2 complement.

Calculation:

JAVA 5: FILES AND JAVA IO

184

FINAL ExAmpLE

The complement to 32512819:

00000001111100000001101100110011
11111110000011111110010011001100
 1
11111110000011111110010011001101

That is

-32512819 = 11111110000011111110010011001101

Calculation:

00000000000111100000100111111000
00000000001010110000010011110100
11111110000011111110010011001101
11111110001110101110100111000001

The complement of the result:

11111110001110101110100111000001
00000001110001010001011000111110
 1
00000001110001010001011000111111

and the result:

00000001110001010001011000111111 = 0000|0001|1100|0101|0001|0110|0011|1111
 = 01C5163F
 = 29693503

The result is as follows, and it is easy to calculate that it is correctly:

-29693503

The arithmetic as outlined in this section is called complement arithmetic, and as you can
see, it is sufficient to construct a processor that can add. Then at the same time a processor
also can subtract. This is the reasons to implements the representation of negative numbers
by their 2 complement.

The complement of the result:

JAVA 5: FILES AND JAVA IO

184

FINAL ExAmpLE

The complement to 32512819:

00000001111100000001101100110011
11111110000011111110010011001100
 1
11111110000011111110010011001101

That is

-32512819 = 11111110000011111110010011001101

Calculation:

00000000000111100000100111111000
00000000001010110000010011110100
11111110000011111110010011001101
11111110001110101110100111000001

The complement of the result:

11111110001110101110100111000001
00000001110001010001011000111110
 1
00000001110001010001011000111111

and the result:

00000001110001010001011000111111 = 0000|0001|1100|0101|0001|0110|0011|1111
 = 01C5163F
 = 29693503

The result is as follows, and it is easy to calculate that it is correctly:

-29693503

The arithmetic as outlined in this section is called complement arithmetic, and as you can
see, it is sufficient to construct a processor that can add. Then at the same time a processor
also can subtract. This is the reasons to implements the representation of negative numbers
by their 2 complement.

and the result:

JAVA 5: FILES AND JAVA IO

184

FINAL ExAmpLE

The complement to 32512819:

00000001111100000001101100110011
11111110000011111110010011001100
 1
11111110000011111110010011001101

That is

-32512819 = 11111110000011111110010011001101

Calculation:

00000000000111100000100111111000
00000000001010110000010011110100
11111110000011111110010011001101
11111110001110101110100111000001

The complement of the result:

11111110001110101110100111000001
00000001110001010001011000111110
 1
00000001110001010001011000111111

and the result:

00000001110001010001011000111111 = 0000|0001|1100|0101|0001|0110|0011|1111
 = 01C5163F
 = 29693503

The result is as follows, and it is easy to calculate that it is correctly:

-29693503

The arithmetic as outlined in this section is called complement arithmetic, and as you can
see, it is sufficient to construct a processor that can add. Then at the same time a processor
also can subtract. This is the reasons to implements the representation of negative numbers
by their 2 complement.

The result is as follows, and it is easy to calculate that it is correctly:

JAVA 5: FILES AND JAVA IO

184

FINAL ExAmpLE

The complement to 32512819:

00000001111100000001101100110011
11111110000011111110010011001100
 1
11111110000011111110010011001101

That is

-32512819 = 11111110000011111110010011001101

Calculation:

00000000000111100000100111111000
00000000001010110000010011110100
11111110000011111110010011001101
11111110001110101110100111000001

The complement of the result:

11111110001110101110100111000001
00000001110001010001011000111110
 1
00000001110001010001011000111111

and the result:

00000001110001010001011000111111 = 0000|0001|1100|0101|0001|0110|0011|1111
 = 01C5163F
 = 29693503

The result is as follows, and it is easy to calculate that it is correctly:

-29693503

The arithmetic as outlined in this section is called complement arithmetic, and as you can
see, it is sufficient to construct a processor that can add. Then at the same time a processor
also can subtract. This is the reasons to implements the representation of negative numbers
by their 2 complement.

The arithmetic as outlined in this section is called complement arithmetic, and as you can
see, it is sufficient to construct a processor that can add. Then at the same time a processor
also can subtract. This is the reasons to implements the representation of negative numbers
by their 2 complement.

JAVA 5: FILES AND JAVA IO

185

FInal example

185

MULTIPLICATION

If you in the decimal number system multiply a number by 10 (with the base), you must
move the number one position to the left and then add a 0. The same is valid for the
binary number system: If you have to multiply a number by 2, you must move the bits
one position to the left and adding a 0 and such an operation is called a left shift, and it is
an operation which is simple to implement in hardware. Consider again the number 219:

JAVA 5: FILES AND JAVA IO

185

FINAL ExAmpLE

185

MULTIPLICATION

If you in the decimal number system multiply a number by 10 (with the base), you must
move the number one position to the left and then add a 0. The same is valid for the
binary number system: If you have to multiply a number by 2, you must move the bits
one position to the left and adding a 0 and such an operation is called a left shift, and it is
an operation which is simple to implement in hardware. Consider again the number 219:

0000000011011011

If you perform a left shift on this number you will get:

0000000110110110

and a simple calculation shows that it is number 438 corresponding to a left shift is
multiplying by 2.

If you look at how to perform multiplication in the 10-number system, for example.
432 * 1322, so this is done by multiplying the 1322 first with 2, then by 3 and finally
with 4, but such that you each time shifts 1322 a position left and finally adds to it all:

If you perform a left shift on this number you will get:

JAVA 5: FILES AND JAVA IO

185

FINAL ExAmpLE

185

MULTIPLICATION

If you in the decimal number system multiply a number by 10 (with the base), you must
move the number one position to the left and then add a 0. The same is valid for the
binary number system: If you have to multiply a number by 2, you must move the bits
one position to the left and adding a 0 and such an operation is called a left shift, and it is
an operation which is simple to implement in hardware. Consider again the number 219:

0000000011011011

If you perform a left shift on this number you will get:

0000000110110110

and a simple calculation shows that it is number 438 corresponding to a left shift is
multiplying by 2.

If you look at how to perform multiplication in the 10-number system, for example.
432 * 1322, so this is done by multiplying the 1322 first with 2, then by 3 and finally
with 4, but such that you each time shifts 1322 a position left and finally adds to it all:

and a simple calculation shows that it is number 438 corresponding to a left shift is
multiplying by 2.

If you look at how to perform multiplication in the 10-number system, for example.
432 * 1322, so this is done by multiplying the 1322 first with 2, then by 3 and finally
with 4, but such that you each time shifts 1322 a position left and finally adds to it all:

http://s.bookboon.com/Subscrybe

JAVA 5: FILES AND JAVA IO

186

FInal example
JAVA 5: FILES AND JAVA IO

186

FINAL ExAmpLE

432 * 1322
022100
 2644
 39660
528800
571104

The same method can be applied to the binary numbers, but just simpler, because every time
either multiply by 0 or 1: To multiply by 0 gives 0, and multiplying by 1 gives the number again.

Suppose you want to multiply 219 by 38, which have the binary values 11011011 and 100110.
If the multiplication is carried out with a word length of 16 bits, it may be performed as follows:

100110 * 0000000011011011
0000010010000000
0011110110111000
0000000110110110
0000001101101100
0001101101100000
0010000010000010

where I have only included the subresults which do not give 0 – there are three such
subresults to calculate the sum, as there are three 1 bits in the number 100110. The result
is the number 8322.

It is somewhat difficult to perform this multiplication manually, as by adding several binary
numbers you need to be more careful to note what you have in carry.

As another example, I calculate the product 752 * 41 in a 16-bit device:

752 = 1011110000
41 = 101001

101001 * 0000001011110000
0000100000000000
0011101100000000
0000001011110000
0001011110000000
0101111000000000
0111100001110000

that is the number 30832.

In practice, it is not so important to be able to multiply binary, but the important thing is
that the multiplication can be performed only by the two operations, left shift and addition
and, therefore, can be carried out by a processor which can shift and add.

The same method can be applied to the binary numbers, but just simpler, because every time
either multiply by 0 or 1: To multiply by 0 gives 0, and multiplying by 1 gives the number again.

Suppose you want to multiply 219 by 38, which have the binary values 11011011 and 100110.
If the multiplication is carried out with a word length of 16 bits, it may be performed as follows:

JAVA 5: FILES AND JAVA IO

186

FINAL ExAmpLE

432 * 1322
022100
 2644
 39660
528800
571104

The same method can be applied to the binary numbers, but just simpler, because every time
either multiply by 0 or 1: To multiply by 0 gives 0, and multiplying by 1 gives the number again.

Suppose you want to multiply 219 by 38, which have the binary values 11011011 and 100110.
If the multiplication is carried out with a word length of 16 bits, it may be performed as follows:

100110 * 0000000011011011
0000010010000000
0011110110111000
0000000110110110
0000001101101100
0001101101100000
0010000010000010

where I have only included the subresults which do not give 0 – there are three such
subresults to calculate the sum, as there are three 1 bits in the number 100110. The result
is the number 8322.

It is somewhat difficult to perform this multiplication manually, as by adding several binary
numbers you need to be more careful to note what you have in carry.

As another example, I calculate the product 752 * 41 in a 16-bit device:

752 = 1011110000
41 = 101001

101001 * 0000001011110000
0000100000000000
0011101100000000
0000001011110000
0001011110000000
0101111000000000
0111100001110000

that is the number 30832.

In practice, it is not so important to be able to multiply binary, but the important thing is
that the multiplication can be performed only by the two operations, left shift and addition
and, therefore, can be carried out by a processor which can shift and add.

where I have only included the subresults which do not give 0 – there are three such
subresults to calculate the sum, as there are three 1 bits in the number 100110. The result
is the number 8322.

It is somewhat difficult to perform this multiplication manually, as by adding several binary
numbers you need to be more careful to note what you have in carry.

As another example, I calculate the product 752 * 41 in a 16-bit device:

JAVA 5: FILES AND JAVA IO

186

FINAL ExAmpLE

432 * 1322
022100
 2644
 39660
528800
571104

The same method can be applied to the binary numbers, but just simpler, because every time
either multiply by 0 or 1: To multiply by 0 gives 0, and multiplying by 1 gives the number again.

Suppose you want to multiply 219 by 38, which have the binary values 11011011 and 100110.
If the multiplication is carried out with a word length of 16 bits, it may be performed as follows:

100110 * 0000000011011011
0000010010000000
0011110110111000
0000000110110110
0000001101101100
0001101101100000
0010000010000010

where I have only included the subresults which do not give 0 – there are three such
subresults to calculate the sum, as there are three 1 bits in the number 100110. The result
is the number 8322.

It is somewhat difficult to perform this multiplication manually, as by adding several binary
numbers you need to be more careful to note what you have in carry.

As another example, I calculate the product 752 * 41 in a 16-bit device:

752 = 1011110000
41 = 101001

101001 * 0000001011110000
0000100000000000
0011101100000000
0000001011110000
0001011110000000
0101111000000000
0111100001110000

that is the number 30832.

In practice, it is not so important to be able to multiply binary, but the important thing is
that the multiplication can be performed only by the two operations, left shift and addition
and, therefore, can be carried out by a processor which can shift and add.

that is the number 30832.

In practice, it is not so important to be able to multiply binary, but the important thing is
that the multiplication can be performed only by the two operations, left shift and addition
and, therefore, can be carried out by a processor which can shift and add.

JAVA 5: FILES AND JAVA IO

187

FInal example

DIVISION

Division is performed in the decimal number system by subtraction. The division algorithm
can also be transferred to the binary number system, and division can then be performed
by the processor, which can add.

It is not so easy to divide manually because you have to keep track of whether you have
to borrow, but one example.

Consider the number 13556 and assume that it must be divided by 38, and the use of a
word length of 16 bits. Note first that the result is an integer, and a simple calculation says
that the result should be 356:

JAVA 5: FILES AND JAVA IO

187

FINAL ExAmpLE

DIVISION

Division is performed in the decimal number system by subtraction. The division algorithm
can also be transferred to the binary number system, and division can then be performed
by the processor, which can add.

It is not so easy to divide manually because you have to keep track of whether you have
to borrow, but one example.

Consider the number 13556 and assume that it must be divided by 38, and the use of a
word length of 16 bits. Note first that the result is an integer, and a simple calculation says
that the result should be 356:

38 | 13556 | 356
 114..
 215.
 190.
 256
 228
 28

The quotient is 356, and you get a remainder of 28, corresponding to the division does
not go up.

If you attemptes to copy the usual division algorithm for decimal numbers to the binary
system, the method is simpler, since each iteration always results in a 0 time or 1 time.

13556 = 11010011110100
38 = 100110

The division can now be done binary, as shown below. However, it is not quite easy to
do manually:

1. if the number you divide with is greater than the number above, it goes a 0 time,
and the upper number goes unchanged on to the next step

2. otherwise it goes a 1 time, and the number you divide by, must then be subtracted
from the number above – here it may be necessary to “borrow”, which you should
keep track of

3. the the next bit is used (as the right bit)
4. continuing until there are no more bits

The quotient is 356, and you get a remainder of 28, corresponding to the division does
not go up.

If you attemptes to copy the usual division algorithm for decimal numbers to the binary
system, the method is simpler, since each iteration always results in a 0 time or 1 time.

JAVA 5: FILES AND JAVA IO

187

FINAL ExAmpLE

DIVISION

Division is performed in the decimal number system by subtraction. The division algorithm
can also be transferred to the binary number system, and division can then be performed
by the processor, which can add.

It is not so easy to divide manually because you have to keep track of whether you have
to borrow, but one example.

Consider the number 13556 and assume that it must be divided by 38, and the use of a
word length of 16 bits. Note first that the result is an integer, and a simple calculation says
that the result should be 356:

38 | 13556 | 356
 114..
 215.
 190.
 256
 228
 28

The quotient is 356, and you get a remainder of 28, corresponding to the division does
not go up.

If you attemptes to copy the usual division algorithm for decimal numbers to the binary
system, the method is simpler, since each iteration always results in a 0 time or 1 time.

13556 = 11010011110100
38 = 100110

The division can now be done binary, as shown below. However, it is not quite easy to
do manually:

1. if the number you divide with is greater than the number above, it goes a 0 time,
and the upper number goes unchanged on to the next step

2. otherwise it goes a 1 time, and the number you divide by, must then be subtracted
from the number above – here it may be necessary to “borrow”, which you should
keep track of

3. the the next bit is used (as the right bit)
4. continuing until there are no more bits

The division can now be done binary, as shown below. However, it is not quite easy to
do manually:

1. if the number you divide with is greater than the number above, it goes a 0 time,
and the upper number goes unchanged on to the next step

2. otherwise it goes a 1 time, and the number you divide by, must then be subtracted
from the number above – here it may be necessary to “borrow”, which you should
keep track of

3. the the next bit is used (as the right bit)
4. continuing until there are no more bits

JAVA 5: FILES AND JAVA IO

188

FInal example

188

JAVA 5: FILES AND JAVA IO

188

FINAL ExAmpLE

188

100110 | 0011010011110100 | 00101100100
 100110..........
 011010.........
 100110.........
 110100........
 100110........
 011101.......
 100110.......
 111011......
 100110......
 101011.....
 100110.....
 001011....
 100110....
 010110...
 100110...
 101101..
 100110..
 001110.
 100110.
 011100
 100110
 11110

http://s.bookboon.com/volvo

JAVA 5: FILES AND JAVA IO

189

FInal example

That is, the result is

JAVA 5: FILES AND JAVA IO

189

FINAL ExAmpLE

That is, the result is

0000000101100100

that is the number 356.

It is not particularly interesting to be able to calculate binary, but the section shows that
using the complement arithmetic and a processor that can add it can perform the four
arithmetical operations.

BINARY OPERATIONS

Above I have discussed binary arithmetic and explained why the addition is a fundamental
operation for a processor. There are other important operations as processors must be able
to perform all of which can be implemented efficiently and simple in hardware. This section
lists these basic binary operations.

Another reason for looking at these operations is that they are supported by many programming
languages, so the languages has operators that correspond to the binary operations. In many
contexts, it is important directly to be able to manipulate the individual bits, and to these
the binary operators are important.

LEFT SHIFT

This operation I have already mentioned, but given a device with a particular word length
the operation shifts all bits one position to the left and insert a 0 in the right end. For
example a 16 bits unit

0011101111100001

and after a left shift the value is:

0111011111000010

The bit that was left is gone, which is a part of the operation, but in a processor this bit
is transferred to a status bit.

If the bit pattern that is shifted to left represents a number it corresponds to, that number is
multiplied by 2. Note that this means that if a number is shifted n positions, it corresponds
to, that the number has been multiplied by 2n.

that is the number 356.

It is not particularly interesting to be able to calculate binary, but the section shows that
using the complement arithmetic and a processor that can add it can perform the four
arithmetical operations.

BINARY OPERATIONS

Above I have discussed binary arithmetic and explained why the addition is a fundamental
operation for a processor. There are other important operations as processors must be able
to perform all of which can be implemented efficiently and simple in hardware. This section
lists these basic binary operations.

Another reason for looking at these operations is that they are supported by many programming
languages, so the languages has operators that correspond to the binary operations. In many
contexts, it is important directly to be able to manipulate the individual bits, and to these
the binary operators are important.

LEFT SHIFT

This operation I have already mentioned, but given a device with a particular word length
the operation shifts all bits one position to the left and insert a 0 in the right end. For
example a 16 bits unit

JAVA 5: FILES AND JAVA IO

189

FINAL ExAmpLE

That is, the result is

0000000101100100

that is the number 356.

It is not particularly interesting to be able to calculate binary, but the section shows that
using the complement arithmetic and a processor that can add it can perform the four
arithmetical operations.

BINARY OPERATIONS

Above I have discussed binary arithmetic and explained why the addition is a fundamental
operation for a processor. There are other important operations as processors must be able
to perform all of which can be implemented efficiently and simple in hardware. This section
lists these basic binary operations.

Another reason for looking at these operations is that they are supported by many programming
languages, so the languages has operators that correspond to the binary operations. In many
contexts, it is important directly to be able to manipulate the individual bits, and to these
the binary operators are important.

LEFT SHIFT

This operation I have already mentioned, but given a device with a particular word length
the operation shifts all bits one position to the left and insert a 0 in the right end. For
example a 16 bits unit

0011101111100001

and after a left shift the value is:

0111011111000010

The bit that was left is gone, which is a part of the operation, but in a processor this bit
is transferred to a status bit.

If the bit pattern that is shifted to left represents a number it corresponds to, that number is
multiplied by 2. Note that this means that if a number is shifted n positions, it corresponds
to, that the number has been multiplied by 2n.

and after a left shift the value is:

JAVA 5: FILES AND JAVA IO

189

FINAL ExAmpLE

That is, the result is

0000000101100100

that is the number 356.

It is not particularly interesting to be able to calculate binary, but the section shows that
using the complement arithmetic and a processor that can add it can perform the four
arithmetical operations.

BINARY OPERATIONS

Above I have discussed binary arithmetic and explained why the addition is a fundamental
operation for a processor. There are other important operations as processors must be able
to perform all of which can be implemented efficiently and simple in hardware. This section
lists these basic binary operations.

Another reason for looking at these operations is that they are supported by many programming
languages, so the languages has operators that correspond to the binary operations. In many
contexts, it is important directly to be able to manipulate the individual bits, and to these
the binary operators are important.

LEFT SHIFT

This operation I have already mentioned, but given a device with a particular word length
the operation shifts all bits one position to the left and insert a 0 in the right end. For
example a 16 bits unit

0011101111100001

and after a left shift the value is:

0111011111000010

The bit that was left is gone, which is a part of the operation, but in a processor this bit
is transferred to a status bit.

If the bit pattern that is shifted to left represents a number it corresponds to, that number is
multiplied by 2. Note that this means that if a number is shifted n positions, it corresponds
to, that the number has been multiplied by 2n.

The bit that was left is gone, which is a part of the operation, but in a processor this bit
is transferred to a status bit.

If the bit pattern that is shifted to left represents a number it corresponds to, that number is
multiplied by 2. Note that this means that if a number is shifted n positions, it corresponds
to, that the number has been multiplied by 2n.

JAVA 5: FILES AND JAVA IO

190

FInal example

RIGHT SHIFT

A right shift is an operation that shifts all the bits in a word one position to the right and
inserts a 0 in first position, for example.

JAVA 5: FILES AND JAVA IO

190

FINAL ExAmpLE

RIGHT SHIFT

A right shift is an operation that shifts all the bits in a word one position to the right and
inserts a 0 in first position, for example.

0011101111100001

and after a right shift the value is

0001110111110000

If the bit pattern that is shifted, represents a number, it means that the number is divided by
2. If the number is shifted n positions, it corresponds to, that the number is divided by 2n.

There is a variant of a right shift, known as an arithmetic right shift. The difference is that
the bit that is inserted in first position is the sign bit. That is, if the first bit is 0, a 0 bit is
inserted, and if the first bit is 1, a 1 bit is inserted. If, for example you has the bit pattern

0011101111100001

is the result of a right arithmetic shift

0001110111110000

an such the same as a right shift. If, however, the pattern

1011101111100001

is the result of a right arithmetic shift

1101110111110000

and after a right shift the value is

JAVA 5: FILES AND JAVA IO

190

FINAL ExAmpLE

RIGHT SHIFT

A right shift is an operation that shifts all the bits in a word one position to the right and
inserts a 0 in first position, for example.

0011101111100001

and after a right shift the value is

0001110111110000

If the bit pattern that is shifted, represents a number, it means that the number is divided by
2. If the number is shifted n positions, it corresponds to, that the number is divided by 2n.

There is a variant of a right shift, known as an arithmetic right shift. The difference is that
the bit that is inserted in first position is the sign bit. That is, if the first bit is 0, a 0 bit is
inserted, and if the first bit is 1, a 1 bit is inserted. If, for example you has the bit pattern

0011101111100001

is the result of a right arithmetic shift

0001110111110000

an such the same as a right shift. If, however, the pattern

1011101111100001

is the result of a right arithmetic shift

1101110111110000

If the bit pattern that is shifted, represents a number, it means that the number is divided by
2. If the number is shifted n positions, it corresponds to, that the number is divided by 2n.

There is a variant of a right shift, known as an arithmetic right shift. The difference is that
the bit that is inserted in first position is the sign bit. That is, if the first bit is 0, a 0 bit is
inserted, and if the first bit is 1, a 1 bit is inserted. If, for example you has the bit pattern

JAVA 5: FILES AND JAVA IO

190

FINAL ExAmpLE

RIGHT SHIFT

A right shift is an operation that shifts all the bits in a word one position to the right and
inserts a 0 in first position, for example.

0011101111100001

and after a right shift the value is

0001110111110000

If the bit pattern that is shifted, represents a number, it means that the number is divided by
2. If the number is shifted n positions, it corresponds to, that the number is divided by 2n.

There is a variant of a right shift, known as an arithmetic right shift. The difference is that
the bit that is inserted in first position is the sign bit. That is, if the first bit is 0, a 0 bit is
inserted, and if the first bit is 1, a 1 bit is inserted. If, for example you has the bit pattern

0011101111100001

is the result of a right arithmetic shift

0001110111110000

an such the same as a right shift. If, however, the pattern

1011101111100001

is the result of a right arithmetic shift

1101110111110000

is the result of a right arithmetic shift

JAVA 5: FILES AND JAVA IO

190

FINAL ExAmpLE

RIGHT SHIFT

A right shift is an operation that shifts all the bits in a word one position to the right and
inserts a 0 in first position, for example.

0011101111100001

and after a right shift the value is

0001110111110000

If the bit pattern that is shifted, represents a number, it means that the number is divided by
2. If the number is shifted n positions, it corresponds to, that the number is divided by 2n.

There is a variant of a right shift, known as an arithmetic right shift. The difference is that
the bit that is inserted in first position is the sign bit. That is, if the first bit is 0, a 0 bit is
inserted, and if the first bit is 1, a 1 bit is inserted. If, for example you has the bit pattern

0011101111100001

is the result of a right arithmetic shift

0001110111110000

an such the same as a right shift. If, however, the pattern

1011101111100001

is the result of a right arithmetic shift

1101110111110000

an such the same as a right shift. If, however, the pattern

JAVA 5: FILES AND JAVA IO

190

FINAL ExAmpLE

RIGHT SHIFT

A right shift is an operation that shifts all the bits in a word one position to the right and
inserts a 0 in first position, for example.

0011101111100001

and after a right shift the value is

0001110111110000

If the bit pattern that is shifted, represents a number, it means that the number is divided by
2. If the number is shifted n positions, it corresponds to, that the number is divided by 2n.

There is a variant of a right shift, known as an arithmetic right shift. The difference is that
the bit that is inserted in first position is the sign bit. That is, if the first bit is 0, a 0 bit is
inserted, and if the first bit is 1, a 1 bit is inserted. If, for example you has the bit pattern

0011101111100001

is the result of a right arithmetic shift

0001110111110000

an such the same as a right shift. If, however, the pattern

1011101111100001

is the result of a right arithmetic shift

1101110111110000

is the result of a right arithmetic shift

JAVA 5: FILES AND JAVA IO

190

FINAL ExAmpLE

RIGHT SHIFT

A right shift is an operation that shifts all the bits in a word one position to the right and
inserts a 0 in first position, for example.

0011101111100001

and after a right shift the value is

0001110111110000

If the bit pattern that is shifted, represents a number, it means that the number is divided by
2. If the number is shifted n positions, it corresponds to, that the number is divided by 2n.

There is a variant of a right shift, known as an arithmetic right shift. The difference is that
the bit that is inserted in first position is the sign bit. That is, if the first bit is 0, a 0 bit is
inserted, and if the first bit is 1, a 1 bit is inserted. If, for example you has the bit pattern

0011101111100001

is the result of a right arithmetic shift

0001110111110000

an such the same as a right shift. If, however, the pattern

1011101111100001

is the result of a right arithmetic shift

1101110111110000

JAVA 5: FILES AND JAVA IO

191

FInal example

191

AND

It is an operation that basically works on two bits, and where the result is a 1 bit if both of
the arguments are 1 and otherwise 0. The operation may be expressed in the following table:

JAVA 5: FILES AND JAVA IO

191

FINAL ExAmpLE

191

AND

It is an operation that basically works on two bits, and where the result is a 1 bit if both of
the arguments are 1 and otherwise 0. The operation may be expressed in the following table:

Arg 1 Arg 2 AND

0 0 0

0 1 0

1 0 0

1 1 1

The operation corresponds to a conjunction of two statements.

If you have two words an AND of the two words, is a bitwise AND. If, for example you
has two 8-bit words:

01100010
11110000

The operation corresponds to a conjunction of two statements.

If you have two words an AND of the two words, is a bitwise AND. If, for example you
has two 8-bit words:

JAVA 5: FILES AND JAVA IO

191

FINAL ExAmpLE

191

AND

It is an operation that basically works on two bits, and where the result is a 1 bit if both of
the arguments are 1 and otherwise 0. The operation may be expressed in the following table:

Arg 1 Arg 2 AND

0 0 0

0 1 0

1 0 0

1 1 1

The operation corresponds to a conjunction of two statements.

If you have two words an AND of the two words, is a bitwise AND. If, for example you
has two 8-bit words:

01100010
11110000

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 5: FILES AND JAVA IO

192

FInal example

you determines their AND as follows:

JAVA 5: FILES AND JAVA IO

192

FINAL ExAmpLE

you determines their AND as follows:

 01100010
 11110000
AND 01100000

That is, you get 1, where there are two 1 bits, and otherwise the 0.

OR

It is an operation that basically works on two bits, and the result is a bit, which is 0 if both
arguments are 0 and otherwise is 1.

The operation may be expressed in the following table:

Arg 1 Arg 2 OR

0 0 0

0 1 1

1 0 1

1 1 1

The operation corresponds to a disjunction of two statements.

If you have two words an OR of the two words is a bitwise OR. If, for example you has
two 8-bit words:

01100010
11110000

you one determines their OR as follows:

 01100010
 11110000
OR 11110010

That is, you get 0, where there are two 0 bits, and otherwise 1.

That is, you get 1, where there are two 1 bits, and otherwise the 0.

OR

It is an operation that basically works on two bits, and the result is a bit, which is 0 if both
arguments are 0 and otherwise is 1.

The operation may be expressed in the following table:

JAVA 5: FILES AND JAVA IO

192

FINAL ExAmpLE

you determines their AND as follows:

 01100010
 11110000
AND 01100000

That is, you get 1, where there are two 1 bits, and otherwise the 0.

OR

It is an operation that basically works on two bits, and the result is a bit, which is 0 if both
arguments are 0 and otherwise is 1.

The operation may be expressed in the following table:

Arg 1 Arg 2 OR

0 0 0

0 1 1

1 0 1

1 1 1

The operation corresponds to a disjunction of two statements.

If you have two words an OR of the two words is a bitwise OR. If, for example you has
two 8-bit words:

01100010
11110000

you one determines their OR as follows:

 01100010
 11110000
OR 11110010

That is, you get 0, where there are two 0 bits, and otherwise 1.

The operation corresponds to a disjunction of two statements.

If you have two words an OR of the two words is a bitwise OR. If, for example you has
two 8-bit words:

JAVA 5: FILES AND JAVA IO

192

FINAL ExAmpLE

you determines their AND as follows:

 01100010
 11110000
AND 01100000

That is, you get 1, where there are two 1 bits, and otherwise the 0.

OR

It is an operation that basically works on two bits, and the result is a bit, which is 0 if both
arguments are 0 and otherwise is 1.

The operation may be expressed in the following table:

Arg 1 Arg 2 OR

0 0 0

0 1 1

1 0 1

1 1 1

The operation corresponds to a disjunction of two statements.

If you have two words an OR of the two words is a bitwise OR. If, for example you has
two 8-bit words:

01100010
11110000

you one determines their OR as follows:

 01100010
 11110000
OR 11110010

That is, you get 0, where there are two 0 bits, and otherwise 1.

you one determines their OR as follows:

JAVA 5: FILES AND JAVA IO

192

FINAL ExAmpLE

you determines their AND as follows:

 01100010
 11110000
AND 01100000

That is, you get 1, where there are two 1 bits, and otherwise the 0.

OR

It is an operation that basically works on two bits, and the result is a bit, which is 0 if both
arguments are 0 and otherwise is 1.

The operation may be expressed in the following table:

Arg 1 Arg 2 OR

0 0 0

0 1 1

1 0 1

1 1 1

The operation corresponds to a disjunction of two statements.

If you have two words an OR of the two words is a bitwise OR. If, for example you has
two 8-bit words:

01100010
11110000

you one determines their OR as follows:

 01100010
 11110000
OR 11110010

That is, you get 0, where there are two 0 bits, and otherwise 1.That is, you get 0, where there are two 0 bits, and otherwise 1.

JAVA 5: FILES AND JAVA IO

193

FInal example

XOR

It is an operation that basically works on two bits, and where the result is a bit which is 1
if the two arguments are different and 0 if they are equal. The operation may be expressed
in the following table:

JAVA 5: FILES AND JAVA IO

193

FINAL ExAmpLE

XOR

It is an operation that basically works on two bits, and where the result is a bit which is 1
if the two arguments are different and 0 if they are equal. The operation may be expressed
in the following table:

Arg 1 Arg 2 XOR

0 0 0

0 1 1

1 0 1

1 1 0

The operation corresponds to the opposite of a biimplication of two statements.

If you have two words an XOR of the two words is a bitwise XOR. If, for example you
has two 8-bit words:

01100010
11110000

you determines their XOR in the following manner:

 01100010
 11110000
XOR 10010010

NOT

NOT is acting on a single bit by simply turning the bit. The operation can be described
in a table as follows:

Arg NOT

0 1

1 0

The operation is similar to a mathematical negation.

The operation corresponds to the opposite of a biimplication of two statements.

If you have two words an XOR of the two words is a bitwise XOR. If, for example you
has two 8-bit words:

JAVA 5: FILES AND JAVA IO

193

FINAL ExAmpLE

XOR

It is an operation that basically works on two bits, and where the result is a bit which is 1
if the two arguments are different and 0 if they are equal. The operation may be expressed
in the following table:

Arg 1 Arg 2 XOR

0 0 0

0 1 1

1 0 1

1 1 0

The operation corresponds to the opposite of a biimplication of two statements.

If you have two words an XOR of the two words is a bitwise XOR. If, for example you
has two 8-bit words:

01100010
11110000

you determines their XOR in the following manner:

 01100010
 11110000
XOR 10010010

NOT

NOT is acting on a single bit by simply turning the bit. The operation can be described
in a table as follows:

Arg NOT

0 1

1 0

The operation is similar to a mathematical negation.

you determines their XOR in the following manner:

JAVA 5: FILES AND JAVA IO

193

FINAL ExAmpLE

XOR

It is an operation that basically works on two bits, and where the result is a bit which is 1
if the two arguments are different and 0 if they are equal. The operation may be expressed
in the following table:

Arg 1 Arg 2 XOR

0 0 0

0 1 1

1 0 1

1 1 0

The operation corresponds to the opposite of a biimplication of two statements.

If you have two words an XOR of the two words is a bitwise XOR. If, for example you
has two 8-bit words:

01100010
11110000

you determines their XOR in the following manner:

 01100010
 11110000
XOR 10010010

NOT

NOT is acting on a single bit by simply turning the bit. The operation can be described
in a table as follows:

Arg NOT

0 1

1 0

The operation is similar to a mathematical negation.

NOT

NOT is acting on a single bit by simply turning the bit. The operation can be described
in a table as follows:

JAVA 5: FILES AND JAVA IO

193

FINAL ExAmpLE

XOR

It is an operation that basically works on two bits, and where the result is a bit which is 1
if the two arguments are different and 0 if they are equal. The operation may be expressed
in the following table:

Arg 1 Arg 2 XOR

0 0 0

0 1 1

1 0 1

1 1 0

The operation corresponds to the opposite of a biimplication of two statements.

If you have two words an XOR of the two words is a bitwise XOR. If, for example you
has two 8-bit words:

01100010
11110000

you determines their XOR in the following manner:

 01100010
 11110000
XOR 10010010

NOT

NOT is acting on a single bit by simply turning the bit. The operation can be described
in a table as follows:

Arg NOT

0 1

1 0

The operation is similar to a mathematical negation.The operation is similar to a mathematical negation.

JAVA 5: FILES AND JAVA IO

194

FInal example

194

If you have a word a NOT of the word is a bitwise NOT. If, for example you have an
8-bit word:

JAVA 5: FILES AND JAVA IO

194

FINAL ExAmpLE

194

If you have a word a NOT of the word is a bitwise NOT. If, for example you have an
8-bit word:

01100010

you determines its NOT follows:

 01100010
NOT 10011101

That is, that a NOT is the same as the complement of the word.

EXAMPLES

I will conclude this section with a few examples of how using the binary operations to
manipulate the individual bits in a word. Remember in this context that the smallest unit
that directly can be addressed on a computer is a byte, and you can not directly address
the individual bits.

Given a 16-bit word:

0011101111100001

you determines its NOT follows:

JAVA 5: FILES AND JAVA IO

194

FINAL ExAmpLE

194

If you have a word a NOT of the word is a bitwise NOT. If, for example you have an
8-bit word:

01100010

you determines its NOT follows:

 01100010
NOT 10011101

That is, that a NOT is the same as the complement of the word.

EXAMPLES

I will conclude this section with a few examples of how using the binary operations to
manipulate the individual bits in a word. Remember in this context that the smallest unit
that directly can be addressed on a computer is a byte, and you can not directly address
the individual bits.

Given a 16-bit word:

0011101111100001

That is, that a NOT is the same as the complement of the word.

EXAMPLES

I will conclude this section with a few examples of how using the binary operations to
manipulate the individual bits in a word. Remember in this context that the smallest unit
that directly can be addressed on a computer is a byte, and you can not directly address
the individual bits.

Given a 16-bit word:

JAVA 5: FILES AND JAVA IO

194

FINAL ExAmpLE

194

If you have a word a NOT of the word is a bitwise NOT. If, for example you have an
8-bit word:

01100010

you determines its NOT follows:

 01100010
NOT 10011101

That is, that a NOT is the same as the complement of the word.

EXAMPLES

I will conclude this section with a few examples of how using the binary operations to
manipulate the individual bits in a word. Remember in this context that the smallest unit
that directly can be addressed on a computer is a byte, and you can not directly address
the individual bits.

Given a 16-bit word:

0011101111100001

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 5: FILES AND JAVA IO

195

FInal example

Usually are the bit positions numbered from behind starting with 0, and so that the last
bit has index 0, while the first bit has index 15. In this case I would like to set the bit
number 3 to 1 – no matter what value it may already have. This can be done with the
following expression:

JAVA 5: FILES AND JAVA IO

195

FINAL ExAmpLE

Usually are the bit positions numbered from behind starting with 0, and so that the last
bit has index 0, while the first bit has index 15. In this case I would like to set the bit
number 3 to 1 – no matter what value it may already have. This can be done with the
following expression:

0011101111100001 OR 0000000000001000

If in a certain position you OR a 0 to the first bit pattern the result in that position will
be unchanged and be the same as the value of the first bit pattern – to OR a 0 do not
change anything. If in a certain position you OR a 1 to the first bit pattern the result in
that position will certainly be 1 regardless of the value of the first bit pattern may have
had. The result of the foregoing is, therefore,

0011101111100001 OR 0000000000001000 = 0011101111101001

The example can immediately be generalized to other word lengths and thus shows how to
set a particular bit of 1.

A related task concerns how to set a particular bit to 0, no matter what value it may have.

Given a 16-bit word:

0011101111100001

the set bit 8 to 0:

0011101111100001 AND 1111111011111111

If you in a certain position AND a 1 to the first bit pattern the result in that position will
be the same as the value of the first bit pattern – that AND a 1 does not change anything.
If you in a certain position AND a 0 to the first bit pattern the result in that position
certainly will be 0 regardless of the value of the first bit pattern may have had. The result
of the foregoing is, therefore,

0011101111100001 AND 1111111011111111 = 0011101011100001

The example can immediately be generalized to other word lengths and thus show how to
set a particular bit to 0.

If in a certain position you OR a 0 to the first bit pattern the result in that position will
be unchanged and be the same as the value of the first bit pattern – to OR a 0 do not
change anything. If in a certain position you OR a 1 to the first bit pattern the result in
that position will certainly be 1 regardless of the value of the first bit pattern may have
had. The result of the foregoing is, therefore,

JAVA 5: FILES AND JAVA IO

195

FINAL ExAmpLE

Usually are the bit positions numbered from behind starting with 0, and so that the last
bit has index 0, while the first bit has index 15. In this case I would like to set the bit
number 3 to 1 – no matter what value it may already have. This can be done with the
following expression:

0011101111100001 OR 0000000000001000

If in a certain position you OR a 0 to the first bit pattern the result in that position will
be unchanged and be the same as the value of the first bit pattern – to OR a 0 do not
change anything. If in a certain position you OR a 1 to the first bit pattern the result in
that position will certainly be 1 regardless of the value of the first bit pattern may have
had. The result of the foregoing is, therefore,

0011101111100001 OR 0000000000001000 = 0011101111101001

The example can immediately be generalized to other word lengths and thus shows how to
set a particular bit of 1.

A related task concerns how to set a particular bit to 0, no matter what value it may have.

Given a 16-bit word:

0011101111100001

the set bit 8 to 0:

0011101111100001 AND 1111111011111111

If you in a certain position AND a 1 to the first bit pattern the result in that position will
be the same as the value of the first bit pattern – that AND a 1 does not change anything.
If you in a certain position AND a 0 to the first bit pattern the result in that position
certainly will be 0 regardless of the value of the first bit pattern may have had. The result
of the foregoing is, therefore,

0011101111100001 AND 1111111011111111 = 0011101011100001

The example can immediately be generalized to other word lengths and thus show how to
set a particular bit to 0.

The example can immediately be generalized to other word lengths and thus shows how to
set a particular bit of 1.

A related task concerns how to set a particular bit to 0, no matter what value it may have.

Given a 16-bit word:

JAVA 5: FILES AND JAVA IO

195

FINAL ExAmpLE

Usually are the bit positions numbered from behind starting with 0, and so that the last
bit has index 0, while the first bit has index 15. In this case I would like to set the bit
number 3 to 1 – no matter what value it may already have. This can be done with the
following expression:

0011101111100001 OR 0000000000001000

If in a certain position you OR a 0 to the first bit pattern the result in that position will
be unchanged and be the same as the value of the first bit pattern – to OR a 0 do not
change anything. If in a certain position you OR a 1 to the first bit pattern the result in
that position will certainly be 1 regardless of the value of the first bit pattern may have
had. The result of the foregoing is, therefore,

0011101111100001 OR 0000000000001000 = 0011101111101001

The example can immediately be generalized to other word lengths and thus shows how to
set a particular bit of 1.

A related task concerns how to set a particular bit to 0, no matter what value it may have.

Given a 16-bit word:

0011101111100001

the set bit 8 to 0:

0011101111100001 AND 1111111011111111

If you in a certain position AND a 1 to the first bit pattern the result in that position will
be the same as the value of the first bit pattern – that AND a 1 does not change anything.
If you in a certain position AND a 0 to the first bit pattern the result in that position
certainly will be 0 regardless of the value of the first bit pattern may have had. The result
of the foregoing is, therefore,

0011101111100001 AND 1111111011111111 = 0011101011100001

The example can immediately be generalized to other word lengths and thus show how to
set a particular bit to 0.

the set bit 8 to 0:

JAVA 5: FILES AND JAVA IO

195

FINAL ExAmpLE

Usually are the bit positions numbered from behind starting with 0, and so that the last
bit has index 0, while the first bit has index 15. In this case I would like to set the bit
number 3 to 1 – no matter what value it may already have. This can be done with the
following expression:

0011101111100001 OR 0000000000001000

If in a certain position you OR a 0 to the first bit pattern the result in that position will
be unchanged and be the same as the value of the first bit pattern – to OR a 0 do not
change anything. If in a certain position you OR a 1 to the first bit pattern the result in
that position will certainly be 1 regardless of the value of the first bit pattern may have
had. The result of the foregoing is, therefore,

0011101111100001 OR 0000000000001000 = 0011101111101001

The example can immediately be generalized to other word lengths and thus shows how to
set a particular bit of 1.

A related task concerns how to set a particular bit to 0, no matter what value it may have.

Given a 16-bit word:

0011101111100001

the set bit 8 to 0:

0011101111100001 AND 1111111011111111

If you in a certain position AND a 1 to the first bit pattern the result in that position will
be the same as the value of the first bit pattern – that AND a 1 does not change anything.
If you in a certain position AND a 0 to the first bit pattern the result in that position
certainly will be 0 regardless of the value of the first bit pattern may have had. The result
of the foregoing is, therefore,

0011101111100001 AND 1111111011111111 = 0011101011100001

The example can immediately be generalized to other word lengths and thus show how to
set a particular bit to 0.

If you in a certain position AND a 1 to the first bit pattern the result in that position will
be the same as the value of the first bit pattern – that AND a 1 does not change anything.
If you in a certain position AND a 0 to the first bit pattern the result in that position
certainly will be 0 regardless of the value of the first bit pattern may have had. The result
of the foregoing is, therefore,

JAVA 5: FILES AND JAVA IO

195

FINAL ExAmpLE

Usually are the bit positions numbered from behind starting with 0, and so that the last
bit has index 0, while the first bit has index 15. In this case I would like to set the bit
number 3 to 1 – no matter what value it may already have. This can be done with the
following expression:

0011101111100001 OR 0000000000001000

If in a certain position you OR a 0 to the first bit pattern the result in that position will
be unchanged and be the same as the value of the first bit pattern – to OR a 0 do not
change anything. If in a certain position you OR a 1 to the first bit pattern the result in
that position will certainly be 1 regardless of the value of the first bit pattern may have
had. The result of the foregoing is, therefore,

0011101111100001 OR 0000000000001000 = 0011101111101001

The example can immediately be generalized to other word lengths and thus shows how to
set a particular bit of 1.

A related task concerns how to set a particular bit to 0, no matter what value it may have.

Given a 16-bit word:

0011101111100001

the set bit 8 to 0:

0011101111100001 AND 1111111011111111

If you in a certain position AND a 1 to the first bit pattern the result in that position will
be the same as the value of the first bit pattern – that AND a 1 does not change anything.
If you in a certain position AND a 0 to the first bit pattern the result in that position
certainly will be 0 regardless of the value of the first bit pattern may have had. The result
of the foregoing is, therefore,

0011101111100001 AND 1111111011111111 = 0011101011100001

The example can immediately be generalized to other word lengths and thus show how to
set a particular bit to 0.

The example can immediately be generalized to other word lengths and thus show how to
set a particular bit to 0.

JAVA 5: FILES AND JAVA IO

196

FInal example

As a final example I want to show how to test if a particular bit is 0 or 1. Given a 16-bit
word:

JAVA 5: FILES AND JAVA IO

196

FINAL ExAmpLE

As a final example I want to show how to test if a particular bit is 0 or 1. Given a 16-bit
word:

0011101111100001

So, I would like to test the value of bit 4. Consider the following expression:

(0011101111100001 SHIFT RIGHT 4) AND 0000000000000001

If the value of this expression is 0, then the bit 4 is also 0. Otherwise, bit 4 is 1. You could
also also test bit 4 more directly by looking at the value of the following expression:

0011101111100001 AND 0000000000010000

ENCODING OF CHARACTERS

Above I have shown how to represent integers on a computer that works exclusively binary –
that is where all data are represented as sequences of 0 and 1 bits. I have also demonstrated
how the computer by the use of complement arithmetic can perform the four arithmetical
operations. A computer works with other data types than integers and such a computer
must be able to work with text. In this section I will show how to represent text using
binary numbers.

There are several ways, but the principle is simple, as you for each letter, digit and other
characters associates a numeric code, and the only thing that is necessary is to agree on an
encoding table that for each character determines which code to be used. That is where the
differences occurs, as historically are used multiple tables.

ASCII

I’ll start with a table called ASCII (American Standard Code for Information Interchange)
that may not be used directly with modern computers, but it is yet an important table to
know. The table encodes characters as 1 byte numeric codes, and the table then has room
for 256 characters. The table is usually divided into three parts

1. the codes 0–31 that defines various control characters
2. the codes 32–127 that defines standard characters from the english alphabet
3. the codes 128–255 that defines among other country-specific characters

Note that the first two parts totally consists of 128 codes, and thus can be represented by
7 bits, and the first ASCII tables (the first standard) covered only the first two parts and
was thus a 7-bit encoding.

So, I would like to test the value of bit 4. Consider the following expression:

JAVA 5: FILES AND JAVA IO

196

FINAL ExAmpLE

As a final example I want to show how to test if a particular bit is 0 or 1. Given a 16-bit
word:

0011101111100001

So, I would like to test the value of bit 4. Consider the following expression:

(0011101111100001 SHIFT RIGHT 4) AND 0000000000000001

If the value of this expression is 0, then the bit 4 is also 0. Otherwise, bit 4 is 1. You could
also also test bit 4 more directly by looking at the value of the following expression:

0011101111100001 AND 0000000000010000

ENCODING OF CHARACTERS

Above I have shown how to represent integers on a computer that works exclusively binary –
that is where all data are represented as sequences of 0 and 1 bits. I have also demonstrated
how the computer by the use of complement arithmetic can perform the four arithmetical
operations. A computer works with other data types than integers and such a computer
must be able to work with text. In this section I will show how to represent text using
binary numbers.

There are several ways, but the principle is simple, as you for each letter, digit and other
characters associates a numeric code, and the only thing that is necessary is to agree on an
encoding table that for each character determines which code to be used. That is where the
differences occurs, as historically are used multiple tables.

ASCII

I’ll start with a table called ASCII (American Standard Code for Information Interchange)
that may not be used directly with modern computers, but it is yet an important table to
know. The table encodes characters as 1 byte numeric codes, and the table then has room
for 256 characters. The table is usually divided into three parts

1. the codes 0–31 that defines various control characters
2. the codes 32–127 that defines standard characters from the english alphabet
3. the codes 128–255 that defines among other country-specific characters

Note that the first two parts totally consists of 128 codes, and thus can be represented by
7 bits, and the first ASCII tables (the first standard) covered only the first two parts and
was thus a 7-bit encoding.

If the value of this expression is 0, then the bit 4 is also 0. Otherwise, bit 4 is 1. You could
also also test bit 4 more directly by looking at the value of the following expression:

0011101111100001 AND 0000000000010000

ENCODING OF CHARACTERS

Above I have shown how to represent integers on a computer that works exclusively binary –
that is where all data are represented as sequences of 0 and 1 bits. I have also demonstrated
how the computer by the use of complement arithmetic can perform the four arithmetical
operations. A computer works with other data types than integers and such a computer
must be able to work with text. In this section I will show how to represent text using
binary numbers.

There are several ways, but the principle is simple, as you for each letter, digit and other
characters associates a numeric code, and the only thing that is necessary is to agree on an
encoding table that for each character determines which code to be used. That is where the
differences occurs, as historically are used multiple tables.

ASCII

I’ll start with a table called ASCII (American Standard Code for Information Interchange)
that may not be used directly with modern computers, but it is yet an important table to
know. The table encodes characters as 1 byte numeric codes, and the table then has room
for 256 characters. The table is usually divided into three parts

1. the codes 0–31 that defines various control characters
2. the codes 32–127 that defines standard characters from the english alphabet
3. the codes 128–255 that defines among other country-specific characters

Note that the first two parts totally consists of 128 codes, and thus can be represented by
7 bits, and the first ASCII tables (the first standard) covered only the first two parts and
was thus a 7-bit encoding.

JAVA 5: FILES AND JAVA IO

197

FInal example

197

Below is the first part of the table where I partly have shown codes (both in decimal,
binary and hexadecimal) and partly symbolic character’s name and a brief descriptive text.
Note that these codes do not directly correspond to the characters on the keyboard but are
control codes, many of which are defined for the purpose of data communication in which
text has to be transmitted over one or another communication line.

JAVA 5: FILES AND JAVA IO

197

FINAL ExAmpLE

197

Below is the first part of the table where I partly have shown codes (both in decimal,
binary and hexadecimal) and partly symbolic character’s name and a brief descriptive text.
Note that these codes do not directly correspond to the characters on the keyboard but are
control codes, many of which are defined for the purpose of data communication in which
text has to be transmitted over one or another communication line.

DEC BIN HEX Symbol Text

0 00000000 00 NUL Null char

1 00000001 01 SOH Start of heading

2 00000010 02 STX Start of text

3 00000011 03 ETX End of text

4 00000100 04 EOT End of transmission

5 00000101 05 ENQ Enquiry

6 00000110 06 ACK Acknowledgment

7 00000111 07 BEL Bell

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 5: FILES AND JAVA IO

198

FInal example
JAVA 5: FILES AND JAVA IO

198

FINAL ExAmpLE

DEC BIN HEX Symbol Text

8 00001000 08 BS Back space

9 00001001 09 HT Horizontal tab

10 00001010 0A LF Line feed

11 00001011 0B VT Vertical tab

12 00001100 0C FF Form feed

13 00001101 0D CR Carrige return

14 00001110 0E SO Shift out / X-on

15 00001111 0F SI Shift In / X-off

16 00010000 10 DLE Data link escape

17 00010001 11 DC1 Device control 1 (oft. XON)

18 00010010 12 DC2 Device control 2

19 00010011 13 DC3 Device control 3 (oft. XOFF)

20 00010100 14 DC4 Device control 4

21 00010101 15 NAK Negative acknowledgement

22 00010110 16 SYN Synchronous idle

23 00010111 17 ETB End of transmitblock

24 00011000 18 CAN Cancel

25 00011001 19 EM End of medium

26 00011010 1A SUB Substitute

27 00011011 1B ESC Escape

28 00011100 1C FS File separator

29 00011101 1D GS Group separator

30 00011110 1E RS Record separator

31 00011111 1F US Unit separator

JAVA 5: FILES AND JAVA IO

199

FInal example

Below I have listed the codes used with plain text:

 - LF, used for line break
 - HT, used for the tabulator character
 - FF, used for page break
 - ESC, the ESC key
 - BS, the backspace key

Below is the second part of the table, which defines codes for characters in the English
alphabet:

JAVA 5: FILES AND JAVA IO

199

FINAL ExAmpLE

Below I have listed the codes used with plain text:

 - LF, used for line break
 - HT, used for the tabulator character
 - FF, used for page break
 - ESC, the ESC key
 - BS, the backspace key

Below is the second part of the table, which defines codes for characters in the English
alphabet:

DEC BIN HEX DEC BIN HEX DEC BIN HEX

32 00100000 20 64 01000000 40 @ 96 01100000 60 ´

33 00100001 21 ! 65 01000001 41 A 97 01100001 61 a

34 00100010 22 ” 66 01000010 42 B 98 01100010 62 b

35 00100011 23 # 67 01000011 43 C 99 01100011 63 c

36 00100100 24 $ 68 01000100 44 D 100 01100100 64 d

37 00100101 25 % 69 01000101 45 E 101 01100101 65 e

38 00100110 26 & 70 01000110 46 F 102 01100110 66 f

39 00100111 27 ’ 71 01000111 47 G 103 01100111 67 g

40 00101000 28 (72 01001000 48 H 104 01101000 68 h

41 00101001 29) 73 01001001 49 I 105 01101001 69 i

42 00101010 2A * 74 01001010 4A J 106 01101010 6A j

43 00101011 2B + 75 01001011 4B K 107 01101011 6B k

44 00101100 2C , 76 01001100 4C L 108 01101100 6C l

45 00101101 2D - 77 01001101 4D M 109 01101101 6D m

46 00101110 2E . 78 01001110 4E N 110 01101110 6E n

47 00101111 2F / 79 01001111 4F O 111 01101111 6F o

48 00110000 30 0 80 01010000 50 P 112 01110000 70 p

49 00110001 31 1 81 01010001 51 Q 113 01110001 71 q

50 00110010 32 2 82 01010010 52 R 114 01110010 72 r

51 00110011 33 3 83 01010011 53 S 115 01110011 73 s

52 00110100 34 4 84 01010100 54 T 116 01110100 74 t

53 00110101 35 5 85 01010101 55 U 117 01110101 75 u

54 00110110 36 6 86 01010110 56 V 118 01110110 76 v

55 00110111 37 7 87 01010111 57 W 119 01110111 77 w

JAVA 5: FILES AND JAVA IO

200

FInal example

200

JAVA 5: FILES AND JAVA IO

200

FINAL ExAmpLE

200

DEC BIN HEX DEC BIN HEX DEC BIN HEX

56 00111000 38 8 88 01011000 58 X 120 01111000 78 x

57 00111001 39 9 89 01011001 59 Y 121 01111001 79 y

58 00111010 3A : 90 01011010 5A Z 122 01111010 7A z

59 00111011 3B ; 91 01011011 5B [123 01111011 7B {

60 00111100 3C < 92 01011100 5C \ 124 01111100 7C |

61 00111101 3D = 93 01011101 5D] 125 01111101 7D }

62 00111110 3E > 94 01011110 5E ^ 126 01111110 7E ~

63 00111111 3F ? 95 01011111 5F _ 127 01111111 7F

Note particularly the code 32, which is a space.

This encoding is not sufficient, as there are a number of other letters that are national. For
example the Danish letters æ, ø and å, but there are also other characters found on a keyboard,
for example ½, and may also include other special characters such as the Greek alphabet.

Note particularly the code 32, which is a space.

This encoding is not sufficient, as there are a number of other letters that are national. For
example the Danish letters æ, ø and å, but there are also other characters found on a keyboard,
for example ½, and may also include other special characters such as the Greek alphabet.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 5: FILES AND JAVA IO

201

FInal example

Encoding of these symbols have been solved by defining extended ASCII tables for codes
128–255 that defines additional 128 characters. A concrete machine can then load the
table extension that you want to use. As an example is a code table, called ISO 8859-1,
which includes the Danish letters, and below is shown the codes of the Danish letters in
ISO 8859-1:

 - æ 230
 - ø 248
 - å 229
 - Æ 198
 - Ø 216
 - Å 197

Consider as an example the text

Hello World

where there are 11 characters. If this text is encoded as ASCII and stored in the machine’s
memory, it uses 11 bytes plus one, and the contents of the memory might be:

where the content is shown in hexadecimal (so it’s easier for us humans to read), and where
the arrow indicates the address where the text is stored. Note the first byte that indicates
how long the text is. In one way or another there must be stored information about where
the text ends, and it does not have to be a counter, as shown above, but it is one of the
ways used. Note also that if you as illustrated above uses one byte to specify the length,
then a text has a maximum length of 255 characters. The problem can of course easily be
overcomed by using two bytes to or more to indicate the length.

It is important to note that there nowhere are said something about that the 12 bytes should
be interpreted as text, and how those bytes are processed is completely determined of the
program that reads the 12 bytes. As an example could a program choose to interpret the
12 bytes as three 32-bit integers, and the program will then read the following numbers:

JAVA 5: FILES AND JAVA IO

201

FINAL ExAmpLE

Encoding of these symbols have been solved by defining extended ASCII tables for codes
128–255 that defines additional 128 characters. A concrete machine can then load the
table extension that you want to use. As an example is a code table, called ISO 8859-1,
which includes the Danish letters, and below is shown the codes of the Danish letters in
ISO 8859-1:

 - æ 230
 - ø 248
 - å 229
 - Æ 198
 - Ø 216
 - Å 197

Consider as an example the text

Hello World

where there are 11 characters. If this text is encoded as ASCII and stored in the machine’s
memory, it uses 11 bytes plus one, and the contents of the memory might be:

where the content is shown in hexadecimal (so it’s easier for us humans to read), and where
the arrow indicates the address where the text is stored. Note the first byte that indicates
how long the text is. In one way or another there must be stored information about where
the text ends, and it does not have to be a counter, as shown above, but it is one of the
ways used. Note also that if you as illustrated above uses one byte to specify the length,
then a text has a maximum length of 255 characters. The problem can of course easily be
overcomed by using two bytes to or more to indicate the length.

It is important to note that there nowhere are said something about that the 12 bytes should
be interpreted as text, and how those bytes are processed is completely determined of the
program that reads the 12 bytes. As an example could a program choose to interpret the
12 bytes as three 32-bit integers, and the program will then read the following numbers:

0B48656C = 189293932
6C6F2057 = 1819222103
6F726C64 = 1869769828

JAVA 5: FILES AND JAVA IO

202

FInal example

which is something completely different than the text Hello World. A program can in
principle read arbitrary bytes and interpret them as it will, but if it makes sense is a whole
different matter.

UNICODE

The encoding used today, is called Unicode, and the purpose is to replace the many different
code pages known from ASCII, with a single code page, which contains all possible characters
in all different languages. The price for it is obviously a very large table (just think of all
non-European languages, chemical symbols, mathematical symbols, etc.), and it is also the
system’s disadvantage, both because it can be difficult to define a table, which all agree on, or
that it could be “expensive” to use such a large table, if you really only need a small subset.

There is defined two different systems:

 - UTF (Unicode Transfer Format)
 - USC (Universal Character Set)

and each of these systems has multiple encodings, and I will mention the following:

 - UTF-8, which is an 8-bit variable length encoding, which basically is a kind of
extension of the ASCII system, and in particular is widely used on the Internet

 - UTF-16 which is a 16 bit variable length encoding used by Windows
 - UTF-32, which is a 32-bit fixed-length encoding, is used to some extent in the

Unix and Linux (the same as the UCS-4)

Mention must also UCS-2, which is a fixed-length 16-bit encoding, that only has support
a subset of all Unicodes.

That an encoding is of fixed length means that all characters take up the same. In UTF-32
all the characters so fills 4 bytes. Is an encoding of variable length, the characters does not
fill the same, and basically it is the principle that characters used often has codes with a
smaller size, while characters used rarely take up more space. It is a choice. Fixed length
encoding is the simplest but pay by space consumption, while a variable length encoding
minimizing the required to space, and pay with a more complex encoding, which places
extra demands on the software.

JAVA 5: FILES AND JAVA IO

203

FInal example

203

UTF-16

I’ll start with UTF-16 as the encoding used under Windows and also Linux. All codes are
2 or 4 bytes. The first 256 ASCII codes, that fully correspond to ISO 8859-1, uses two
bytes (16 bits) for each character. As an example is the encoding of a large A

JAVA 5: FILES AND JAVA IO

203

FINAL ExAmpLE

203

UTF-16

I’ll start with UTF-16 as the encoding used under Windows and also Linux. All codes are
2 or 4 bytes. The first 256 ASCII codes, that fully correspond to ISO 8859-1, uses two
bytes (16 bits) for each character. As an example is the encoding of a large A

0041

For all of the most frequently occurring characters 16 bits are used and they have thus hex
codes from 0000 to FFFF, which gives 65,536 different codes. All other codes occupies 4
bytes or 32 bits. All the 16 bits codes is called Basic Multilingual Plane (BMP).

UTF-16 is an ISO standard that has the name ISO / IEC 10646 and include most of the
world’s characters. In principle, the 4 bytes to assign codes corresponds to to 4,294,967,296
characters, but not all are used, and the encoding of 4 bytes code is relatively complex.
Below is a general description.

For all of the most frequently occurring characters 16 bits are used and they have thus hex
codes from 0000 to FFFF, which gives 65,536 different codes. All other codes occupies 4
bytes or 32 bits. All the 16 bits codes is called Basic Multilingual Plane (BMP).

UTF-16 is an ISO standard that has the name ISO / IEC 10646 and include most of the
world’s characters. In principle, the 4 bytes to assign codes corresponds to to 4,294,967,296
characters, but not all are used, and the encoding of 4 bytes code is relatively complex.
Below is a general description.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 5: FILES AND JAVA IO

204

FInal example

For codes outside the BMP defines UTF-16 character codes in the range 10000 – 10FFFF
that gives 1048576 codes. Each code is translated into two codes, called a surrogate pair.
The procedure is as follows:

1. if the code, which according to the standard belongs to the interval [10,000;
10FFFF] subtracts 10000 from the code, and the result is certainly less than or
equal to FFFFF, and thus fills a maximum of 20 bits

2. split the 20-bit code into 2 halves of 10 bits
3. adds D800 to the left half (as max is 3FF) that gives a value in the range [D800; DBFF]
4. adds DC00 to the right half (as max is 3FF) that gives a value in the range

[DC00; DFFF]

It provides precise 1024 * 1024 = 1048576 pairs (10 bits provides 1024 different values).

The standard guarantees that there will never be defined surrogate pairs outside these ranges.
Note that the two intervals are disjoint, and the reason for the somewhat complex encoding
is that it must be simple to decode four bytes unicodes.

UTF-8

UTF-8 is an encoding that is used much on the Internet as it directly is an expansion of
ASCII coding, and as it strives to be sent as few bits as possible. It is a variable-length
encoding, using from 1 to 6 bytes per character. In practice, however, a maximum of 4
bytes, as it is sufficient to encode the entire UTF-16 area.

The table below shows the principles for encoding the UTF-16 area, where a b indicates
a data bit:

JAVA 5: FILES AND JAVA IO

204

FINAL ExAmpLE

For codes outside the BMP defines UTF-16 character codes in the range 10000 – 10FFFF
that gives 1048576 codes. Each code is translated into two codes, called a surrogate pair.
The procedure is as follows:

1. if the code, which according to the standard belongs to the interval [10,000;
10FFFF] subtracts 10000 from the code, and the result is certainly less than or
equal to FFFFF, and thus fills a maximum of 20 bits

2. split the 20-bit code into 2 halves of 10 bits
3. adds D800 to the left half (as max is 3FF) that gives a value in the range [D800; DBFF]
4. adds DC00 to the right half (as max is 3FF) that gives a value in the range

[DC00; DFFF]

It provides precise 1024 * 1024 = 1048576 pairs (10 bits provides 1024 different values).

The standard guarantees that there will never be defined surrogate pairs outside these ranges.
Note that the two intervals are disjoint, and the reason for the somewhat complex encoding
is that it must be simple to decode four bytes unicodes.

UTF-8

UTF-8 is an encoding that is used much on the Internet as it directly is an expansion of
ASCII coding, and as it strives to be sent as few bits as possible. It is a variable-length
encoding, using from 1 to 6 bytes per character. In practice, however, a maximum of 4
bytes, as it is sufficient to encode the entire UTF-16 area.

The table below shows the principles for encoding the UTF-16 area, where a b indicates
a data bit:

Unicode UTF-8 Number of characters

000000 – 00007F 0bbbbbbb 128

000080 – 0007FF 110bbbbb 10bbbbbb 1920

000800 – 00FFFF 1110bbbb 10bbbbbb 10bbbbbb 63488

010000 – 1FFFFF 11110bbb 10bbbbbb 10bbbbbb 10bbbbbb 2031616

JAVA 5: FILES AND JAVA IO

205

FInal example

UTF-32

This encoding uses 32 bits for all the characters, and that means that text encoded by this
standard takes up more memory. The system is used only to a limited extent in the Unix
world. In principle, many text operations are simpler when all characters take up the same,
but in practice the gains are modest.

REPRESENTATION OF DECIMAL NUMBERS

Above I have shown how to represent integers in a computer where positive integers are
directly represented as binary numbers, and negative integers are represented by their 2
complement. A computer must also be able to work with decimal fractions, and it is
once more difficult. There are a number of ways, but basically they can be divided into
two categories

1. decimal numbers with fixed decimal point, which in many ways is an extension of
the representation of integers, so that there is a number of the bits for the integer
part and a number of bits for the fractional part

2. decimal numbers with floating point, where you have a certain number of bits for
the whole number, but the bits used for the integer part and which are used for
the fractional part depends on the numbers current value

The two categories are quite different, and the first is by far the simplest, but is best suited
if the numbers do not spread over too wide an interval. The second category enables a far
greater range of numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation
of the decimal numbers, and partly because that’s where most are to add in terms of what I
have previously shown. One speaks generally about floating-point numbers, and here again
there are several variants, but I would look at a standard called IEEE Standard 754, which
is the most commonly used standard for representing floating-point numbers.

A BIT MORE ABOUT BINARY NUMBERS

In the introduction I mentioned that an integer in the 10-number system can be represented
as a sum

140

The two categories are quite different, and the first is by far the simplest, but is best suited if the
numbers do not spread over too wide an interval. The second category enables a far greater range of
numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation of the
decimal numbers, and partly because that's where most are to add in terms of what I have previously
shown. One speaks generally about floating-point numbers, and here again there are several variants,
but I would look at a standard called IEEE Standard 754, which is the most commonly used standard
for representing floating-point numbers.

A bit more about binary numbers

In the introduction I mentioned that an integer in the 10-number system can be represented as a sum

∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
10𝑖𝑖

where the symbols 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 are digits in the decimal number system, and I also mentioned how
this representation can be generalized to an arbitrary base and especially to the base 2 and the binary
number system. Looking again at the 10-number system, the notation can be used to describe arbitrary
decimal numbers, that is numbers which include fractions:

∑ 𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=−𝑚𝑚
10𝑖𝑖

If you looks at the number 1234.56, it can be written as

∑ 𝑎𝑎𝑖𝑖
3

𝑖𝑖=−2
10𝑖𝑖

where 𝑎𝑎−2 = 6, 𝑎𝑎−1 = 5, 𝑎𝑎0 = 4, 𝑎𝑎1 = 3, 𝑎𝑎2 = 2, 𝑎𝑎3 = 1.

This notation in which you works with negative powers of the basic number, may also be used for
binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number's value as a decimal number, because
it still just is a sum of powers of 2:

10110.100101112 = 24 + 22 + 2 + 2−1 + 2−4 + 2−62−7 + 2−8 = 22.58984375

However, you should note that if the result is calculated on a machine, the result will be rounded, if

JAVA 5: FILES AND JAVA IO

206

FInal example

206

where the symbols a0, a1,…an are digits in the decimal number system, and I also mentioned
how this representation can be generalized to an arbitrary base and especially to the base 2
and the binary number system. Looking again at the 10-number system, the notation can
be used to describe arbitrary decimal numbers, that is numbers which include fractions:

140

The two categories are quite different, and the first is by far the simplest, but is best suited if the
numbers do not spread over too wide an interval. The second category enables a far greater range of
numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation of the
decimal numbers, and partly because that's where most are to add in terms of what I have previously
shown. One speaks generally about floating-point numbers, and here again there are several variants,
but I would look at a standard called IEEE Standard 754, which is the most commonly used standard
for representing floating-point numbers.

A bit more about binary numbers

In the introduction I mentioned that an integer in the 10-number system can be represented as a sum

∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
10𝑖𝑖

where the symbols 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 are digits in the decimal number system, and I also mentioned how
this representation can be generalized to an arbitrary base and especially to the base 2 and the binary
number system. Looking again at the 10-number system, the notation can be used to describe arbitrary
decimal numbers, that is numbers which include fractions:

∑ 𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=−𝑚𝑚
10𝑖𝑖

If you looks at the number 1234.56, it can be written as

∑ 𝑎𝑎𝑖𝑖
3

𝑖𝑖=−2
10𝑖𝑖

where 𝑎𝑎−2 = 6, 𝑎𝑎−1 = 5, 𝑎𝑎0 = 4, 𝑎𝑎1 = 3, 𝑎𝑎2 = 2, 𝑎𝑎3 = 1.

This notation in which you works with negative powers of the basic number, may also be used for
binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number's value as a decimal number, because
it still just is a sum of powers of 2:

10110.100101112 = 24 + 22 + 2 + 2−1 + 2−4 + 2−62−7 + 2−8 = 22.58984375

However, you should note that if the result is calculated on a machine, the result will be rounded, if

If you looks at the number 1234.56, it can be written as

140

The two categories are quite different, and the first is by far the simplest, but is best suited if the
numbers do not spread over too wide an interval. The second category enables a far greater range of
numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation of the
decimal numbers, and partly because that's where most are to add in terms of what I have previously
shown. One speaks generally about floating-point numbers, and here again there are several variants,
but I would look at a standard called IEEE Standard 754, which is the most commonly used standard
for representing floating-point numbers.

A bit more about binary numbers

In the introduction I mentioned that an integer in the 10-number system can be represented as a sum

∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
10𝑖𝑖

where the symbols 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 are digits in the decimal number system, and I also mentioned how
this representation can be generalized to an arbitrary base and especially to the base 2 and the binary
number system. Looking again at the 10-number system, the notation can be used to describe arbitrary
decimal numbers, that is numbers which include fractions:

∑ 𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=−𝑚𝑚
10𝑖𝑖

If you looks at the number 1234.56, it can be written as

∑ 𝑎𝑎𝑖𝑖
3

𝑖𝑖=−2
10𝑖𝑖

where 𝑎𝑎−2 = 6, 𝑎𝑎−1 = 5, 𝑎𝑎0 = 4, 𝑎𝑎1 = 3, 𝑎𝑎2 = 2, 𝑎𝑎3 = 1.

This notation in which you works with negative powers of the basic number, may also be used for
binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number's value as a decimal number, because
it still just is a sum of powers of 2:

10110.100101112 = 24 + 22 + 2 + 2−1 + 2−4 + 2−62−7 + 2−8 = 22.58984375

However, you should note that if the result is calculated on a machine, the result will be rounded, if

where

140

The two categories are quite different, and the first is by far the simplest, but is best suited if the
numbers do not spread over too wide an interval. The second category enables a far greater range of
numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation of the
decimal numbers, and partly because that's where most are to add in terms of what I have previously
shown. One speaks generally about floating-point numbers, and here again there are several variants,
but I would look at a standard called IEEE Standard 754, which is the most commonly used standard
for representing floating-point numbers.

A bit more about binary numbers

In the introduction I mentioned that an integer in the 10-number system can be represented as a sum

∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
10𝑖𝑖

where the symbols 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 are digits in the decimal number system, and I also mentioned how
this representation can be generalized to an arbitrary base and especially to the base 2 and the binary
number system. Looking again at the 10-number system, the notation can be used to describe arbitrary
decimal numbers, that is numbers which include fractions:

∑ 𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=−𝑚𝑚
10𝑖𝑖

If you looks at the number 1234.56, it can be written as

∑ 𝑎𝑎𝑖𝑖
3

𝑖𝑖=−2
10𝑖𝑖

where 𝑎𝑎−2 = 6, 𝑎𝑎−1 = 5, 𝑎𝑎0 = 4, 𝑎𝑎1 = 3, 𝑎𝑎2 = 2, 𝑎𝑎3 = 1.

This notation in which you works with negative powers of the basic number, may also be used for
binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number's value as a decimal number, because
it still just is a sum of powers of 2:

10110.100101112 = 24 + 22 + 2 + 2−1 + 2−4 + 2−62−7 + 2−8 = 22.58984375

However, you should note that if the result is calculated on a machine, the result will be rounded, if

.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 5: FILES AND JAVA IO

207

FInal example

This notation in which you works with negative powers of the basic number, may also be
used for binary numbers. Consider the binary number

JAVA 5: FILES AND JAVA IO

207

FINAL ExAmpLE

This notation in which you works with negative powers of the basic number, may also be
used for binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number’s value as a decimal
number, because it still just is a sum of powers of 2:

140

The two categories are quite different, and the first is by far the simplest, but is best suited if the
numbers do not spread over too wide an interval. The second category enables a far greater range of
numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation of the
decimal numbers, and partly because that's where most are to add in terms of what I have previously
shown. One speaks generally about floating-point numbers, and here again there are several variants,
but I would look at a standard called IEEE Standard 754, which is the most commonly used standard
for representing floating-point numbers.

A bit more about binary numbers

In the introduction I mentioned that an integer in the 10-number system can be represented as a sum

∑𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=0
10𝑖𝑖𝑖𝑖

where the symbols 𝑎𝑎𝑎𝑎0,𝑎𝑎𝑎𝑎1,. . . , 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 are digits in the decimal number system, and I also mentioned how
this representation can be generalized to an arbitrary base and especially to the base 2 and the binary
number system. Looking again at the 10-number system, the notation can be used to describe arbitrary
decimal numbers, that is numbers which include fractions:

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=−𝑚𝑚𝑚𝑚
10𝑖𝑖𝑖𝑖

If you looks at the number 1234.56, it can be written as

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
3

𝑖𝑖𝑖𝑖=−2
10𝑖𝑖𝑖𝑖

where 𝑎𝑎𝑎𝑎−2 = 6, 𝑎𝑎𝑎𝑎−1 = 5, 𝑎𝑎𝑎𝑎0 = 4, 𝑎𝑎𝑎𝑎1 = 3, 𝑎𝑎𝑎𝑎2 = 2, 𝑎𝑎𝑎𝑎3 = 1.

This notation in which you works with negative powers of the basic number, may also be used for
binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number's value as a decimal number, because
it still just is a sum of powers of 2:

10110.100101112 = 24 + 22 + 2 + 2−1 + 2−4 + 2−62−7 + 2−8 = 22.58984375

However, you should note that if the result is calculated on a machine, the result will be rounded, if
However, you should note that if the result is calculated on a machine, the result will be
rounded, if there are many bits after the decimal point, for example

141

there are many bits after the decimal point, for example

1.000000000000112 = 1 + 2−13 + 2−14 = 1.0001831054688

You can also convert the decimal number to a binary fraction. This is done by converting the integer
part and the fractional part separately. Consider the number 123.45

The integer part can be converted as shown previously:

123 =
64 + 59 =
64 + 32 + 27 =
64 + 32 + 16 + 11 =
64 + 32 + 16 + 8 + 3 =
64 + 32 + 16 + 8 + 2 + 1

or by division by 2. The result is that 123 = 1111011

The fraction part can be converted by multiplying by 2:

– multiply the fraction part by 2
– the integer part, that is 0 or 1, is the next bit
– repeat above until the fraction part is 0, or you have the wanted number of bits

This means that you finds the next bit of multiplying by two, and then continue with the fractional part
to this result.

In this case, the method is:

 45
0 90
1 80
1 60
1 20
0 40
0 80
1 60
....

and the result is that 1111011.0111001 = 123.45 which is a rounded result.

As another example, the consider the decimal number 0.0825. Here, it is only necessary to convert the
fractional part, as the integer part is 0:

 0825
0 1650
0 3300
0 6600
1 3200

You can also convert the decimal number to a binary fraction. This is done by converting
the integer part and the fractional part separately. Consider the number 123.45

The integer part can be converted as shown previously:

123 =
64 + 59 =
64 + 32 + 27 =
64 + 32 + 16 + 11 =
64 + 32 + 16 + 8 + 3 =
64 + 32 + 16 + 8 + 2 + 1

or by division by 2. The result is that 123 = 1111011

The fraction part can be converted by multiplying by 2:

 - multiply the fraction part by 2
 - the integer part, that is 0 or 1, is the next bit
 - repeat above until the fraction part is 0, or you have the wanted number of bits

This means that you finds the next bit of multiplying by two, and then continue with the
fractional part to this result.

which this time has a fraction. It is easy to determine the number’s value as a decimal
number, because it still just is a sum of powers of 2:

140

The two categories are quite different, and the first is by far the simplest, but is best suited if the
numbers do not spread over too wide an interval. The second category enables a far greater range of
numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation of the
decimal numbers, and partly because that's where most are to add in terms of what I have previously
shown. One speaks generally about floating-point numbers, and here again there are several variants,
but I would look at a standard called IEEE Standard 754, which is the most commonly used standard
for representing floating-point numbers.

A bit more about binary numbers

In the introduction I mentioned that an integer in the 10-number system can be represented as a sum

∑𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=0
10𝑖𝑖

where the symbols 𝑎𝑎0,𝑎𝑎1,. . . , 𝑎𝑎𝑛𝑛 are digits in the decimal number system, and I also mentioned how
this representation can be generalized to an arbitrary base and especially to the base 2 and the binary
number system. Looking again at the 10-number system, the notation can be used to describe arbitrary
decimal numbers, that is numbers which include fractions:

∑ 𝑎𝑎𝑖𝑖
𝑛𝑛

𝑖𝑖=−𝑚𝑚
10𝑖𝑖

If you looks at the number 1234.56, it can be written as

∑ 𝑎𝑎𝑖𝑖
3

𝑖𝑖=−2
10𝑖𝑖

where 𝑎𝑎−2 = 6, 𝑎𝑎−1 = 5, 𝑎𝑎0 = 4, 𝑎𝑎1 = 3, 𝑎𝑎2 = 2, 𝑎𝑎3 = 1.

This notation in which you works with negative powers of the basic number, may also be used for
binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number's value as a decimal number, because
it still just is a sum of powers of 2:

10110.100101112 = 24 + 22 + 2 + 2−1 + 2−4 + 2−62−7 + 2−8 = 22.58984375

However, you should note that if the result is calculated on a machine, the result will be rounded, if
However, you should note that if the result is calculated on a machine, the result will be
rounded, if there are many bits after the decimal point, for example

141

there are many bits after the decimal point, for example

1.000000000000112 = 1 + 2−13 + 2−14 = 1.0001831054688

You can also convert the decimal number to a binary fraction. This is done by converting the integer
part and the fractional part separately. Consider the number 123.45

The integer part can be converted as shown previously:

123 =
64 + 59 =
64 + 32 + 27 =
64 + 32 + 16 + 11 =
64 + 32 + 16 + 8 + 3 =
64 + 32 + 16 + 8 + 2 + 1

or by division by 2. The result is that 123 = 1111011

The fraction part can be converted by multiplying by 2:

– multiply the fraction part by 2
– the integer part, that is 0 or 1, is the next bit
– repeat above until the fraction part is 0, or you have the wanted number of bits

This means that you finds the next bit of multiplying by two, and then continue with the fractional part
to this result.

In this case, the method is:

 45
0 90
1 80
1 60
1 20
0 40
0 80
1 60
....

and the result is that 1111011.0111001 = 123.45 which is a rounded result.

As another example, the consider the decimal number 0.0825. Here, it is only necessary to convert the
fractional part, as the integer part is 0:

 0825
0 1650
0 3300
0 6600
1 3200

You can also convert the decimal number to a binary fraction. This is done by converting
the integer part and the fractional part separately. Consider the number 123.45

The integer part can be converted as shown previously:

JAVA 5: FILES AND JAVA IO

207

FINAL ExAmpLE

This notation in which you works with negative powers of the basic number, may also be
used for binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number’s value as a decimal
number, because it still just is a sum of powers of 2:

140

The two categories are quite different, and the first is by far the simplest, but is best suited if the
numbers do not spread over too wide an interval. The second category enables a far greater range of
numbers, but the representation is more complex.

I will only look at the last category. Partly because it is the most used form of representation of the
decimal numbers, and partly because that's where most are to add in terms of what I have previously
shown. One speaks generally about floating-point numbers, and here again there are several variants,
but I would look at a standard called IEEE Standard 754, which is the most commonly used standard
for representing floating-point numbers.

A bit more about binary numbers

In the introduction I mentioned that an integer in the 10-number system can be represented as a sum

∑𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=0
10𝑖𝑖𝑖𝑖

where the symbols 𝑎𝑎𝑎𝑎0,𝑎𝑎𝑎𝑎1,. . . , 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 are digits in the decimal number system, and I also mentioned how
this representation can be generalized to an arbitrary base and especially to the base 2 and the binary
number system. Looking again at the 10-number system, the notation can be used to describe arbitrary
decimal numbers, that is numbers which include fractions:

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=−𝑚𝑚𝑚𝑚
10𝑖𝑖𝑖𝑖

If you looks at the number 1234.56, it can be written as

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖
3

𝑖𝑖𝑖𝑖=−2
10𝑖𝑖𝑖𝑖

where 𝑎𝑎𝑎𝑎−2 = 6, 𝑎𝑎𝑎𝑎−1 = 5, 𝑎𝑎𝑎𝑎0 = 4, 𝑎𝑎𝑎𝑎1 = 3, 𝑎𝑎𝑎𝑎2 = 2, 𝑎𝑎𝑎𝑎3 = 1.

This notation in which you works with negative powers of the basic number, may also be used for
binary numbers. Consider the binary number

10110.10010111

which this time has a fraction. It is easy to determine the number's value as a decimal number, because
it still just is a sum of powers of 2:

10110.100101112 = 24 + 22 + 2 + 2−1 + 2−4 + 2−62−7 + 2−8 = 22.58984375

However, you should note that if the result is calculated on a machine, the result will be rounded, if
However, you should note that if the result is calculated on a machine, the result will be
rounded, if there are many bits after the decimal point, for example

141

there are many bits after the decimal point, for example

1.000000000000112 = 1 + 2−13 + 2−14 = 1.0001831054688

You can also convert the decimal number to a binary fraction. This is done by converting the integer
part and the fractional part separately. Consider the number 123.45

The integer part can be converted as shown previously:

123 =
64 + 59 =
64 + 32 + 27 =
64 + 32 + 16 + 11 =
64 + 32 + 16 + 8 + 3 =
64 + 32 + 16 + 8 + 2 + 1

or by division by 2. The result is that 123 = 1111011

The fraction part can be converted by multiplying by 2:

– multiply the fraction part by 2
– the integer part, that is 0 or 1, is the next bit
– repeat above until the fraction part is 0, or you have the wanted number of bits

This means that you finds the next bit of multiplying by two, and then continue with the fractional part
to this result.

In this case, the method is:

 45
0 90
1 80
1 60
1 20
0 40
0 80
1 60
....

and the result is that 1111011.0111001 = 123.45 which is a rounded result.

As another example, the consider the decimal number 0.0825. Here, it is only necessary to convert the
fractional part, as the integer part is 0:

 0825
0 1650
0 3300
0 6600
1 3200

You can also convert the decimal number to a binary fraction. This is done by converting
the integer part and the fractional part separately. Consider the number 123.45

The integer part can be converted as shown previously:

123 =
64 + 59 =
64 + 32 + 27 =
64 + 32 + 16 + 11 =
64 + 32 + 16 + 8 + 3 =
64 + 32 + 16 + 8 + 2 + 1

or by division by 2. The result is that 123 = 1111011

The fraction part can be converted by multiplying by 2:

 - multiply the fraction part by 2
 - the integer part, that is 0 or 1, is the next bit
 - repeat above until the fraction part is 0, or you have the wanted number of bits

This means that you finds the next bit of multiplying by two, and then continue with the
fractional part to this result.

The fraction part can be converted by multiplying by 2:

 - multiply the fraction part by 2
 - the integer part, that is 0 or 1, is the next bit
 - repeat above until the fraction part is 0, or you have the wanted number of bits

This means that you finds the next bit of multiplying by two, and then continue with the
fractional part to this result.

JAVA 5: FILES AND JAVA IO

208

FInal example

In this case, the method is:

JAVA 5: FILES AND JAVA IO

208

FINAL ExAmpLE

In this case, the method is:

 45
0 90
1 80
1 60
1 20
0 40
0 80
1 60
....

and the result is that 1111011.0111001 = 123.45 which is a rounded result.

As another example, the consider the decimal number 0.0825. Here, it is only necessary to
convert the fractional part, as the integer part is 0:

 0825
0 1650
0 3300
0 6600
1 3200
0 6400
1 2800
0 5600
1 1200
0 2400
0 4800
0 9600
1 9200
1 8400
1 6800
1 3600

The result: 0.0825 = 000101010001111

Note that if I converts the binary result to a decimal number, I get 0.0824890137 so you
can see that there must be many bits to get an accurate result.

As another example, the consider the decimal number 0.0825. Here, it is only necessary to
convert the fractional part, as the integer part is 0:

 0825
0 1650
0 3300
0 6600
1 3200
0 6400
1 2800
0 5600
1 1200
0 2400
0 4800
0 9600
1 9200
1 8400
1 6800
1 3600

JAVA 5: FILES AND JAVA IO

208

FINAL ExAmpLE

In this case, the method is:

 45
0 90
1 80
1 60
1 20
0 40
0 80
1 60
....

and the result is that 1111011.0111001 = 123.45 which is a rounded result.

As another example, the consider the decimal number 0.0825. Here, it is only necessary to
convert the fractional part, as the integer part is 0:

 0825
0 1650
0 3300
0 6600
1 3200
0 6400
1 2800
0 5600
1 1200
0 2400
0 4800
0 9600
1 9200
1 8400
1 6800
1 3600

The result: 0.0825 = 000101010001111

Note that if I converts the binary result to a decimal number, I get 0.0824890137 so you
can see that there must be many bits to get an accurate result.

Note that if I converts the binary result to a decimal number, I get 0.0824890137 so you
can see that there must be many bits to get an accurate result.

JAVA 5: FILES AND JAVA IO

209

FInal example

209

FLOITING POINT

The decimal numbers are a subset of the real numbers, and the problem is to represent real
numbers using a finite number of bits, for example 32 or 64 which is the most common.
In general, a real number is represented in the form

where the s field always fills 1 bit and represents the sign, the exponent field is an exponent
and the significand field is used for number’s digits.

http://s.bookboon.com/elearningforkids

JAVA 5: FILES AND JAVA IO

210

FInal example

The main problem is that the representation of a real number is not unique, but is always a
rounded result. A representation of the integers defines a subset of the integers, such that all
integers in a range is represented. Similarly it is, by the representation of the real numbers,
that since there are only a limited number of bits available, wee can represent only a subset
of the real numbers, and thus the real numbers within a range, but unlike the integers
includes any interval of real numbers infinite many numbers, and any representation of
real numbers by using a specific number of bits can only represent a subset of the range.
Another problem is that a decimal number such as 123.45 can not be converted to a binary
number with a finite number of bits:

JAVA 5: FILES AND JAVA IO

210

FINAL ExAmpLE

The main problem is that the representation of a real number is not unique, but is always a
rounded result. A representation of the integers defines a subset of the integers, such that all
integers in a range is represented. Similarly it is, by the representation of the real numbers,
that since there are only a limited number of bits available, wee can represent only a subset
of the real numbers, and thus the real numbers within a range, but unlike the integers
includes any interval of real numbers infinite many numbers, and any representation of
real numbers by using a specific number of bits can only represent a subset of the range.
Another problem is that a decimal number such as 123.45 can not be converted to a binary
number with a finite number of bits:

123.45 = 1111011.011100110011001100110011……

So there is no clear relation between decimal fractions and the binary numbers.

32 BITS FLOITING POINTS

I’ll start with a representation that takes up 4 bytes, i.e. 32 bits:

 - 1 bit to the sign
 - 8 bits for the eksponent
 - 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look
at the significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

where n is the value of the exponent field. 127 is called the bias value, which is binary
01111111. It is used to ensure that the content of the exponent field is not negative. I
would as an example look at the number 123.45. Since it is a positive number is the sign
bit 0. The number’s binary representation is

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

So there is no clear relation between decimal fractions and the binary numbers.

32 BITS FLOITING POINTS

I’ll start with a representation that takes up 4 bytes, i.e. 32 bits:

 - 1 bit to the sign
 - 8 bits for the eksponent
 - 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look
at the significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

where n is the value of the exponent field. 127 is called the bias value, which is binary
01111111. It is used to ensure that the content of the exponent field is not negative. I
would as an example look at the number 123.45. Since it is a positive number is the sign
bit 0. The number’s binary representation is

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

JAVA 5: FILES AND JAVA IO

211

FInal example
JAVA 5: FILES AND JAVA IO

211

FINAL ExAmpLE

Therefore, the content of the significand field is 11101101110011001100110 (the first 1
digit before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent
field is 133 or binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is
handled only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

AN EXAMPLE

To highlight the principle I will look at a small calculation. Suppose a floating point contains
the following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110,
which is the number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically
can be assumed as follows. The exponent field represents values in the range of 0 to 255,
but 255 which has the value 11111111 that is illegal. The power of 2 exponent thus lies
between -127 and 127. The largest positive number is:

01111111011111111111111111111111

In the case of floiting point are not used complement arithmetic, and a negative number is
handled only by changing the sign bit. As an example is -123.45 is represented as

JAVA 5: FILES AND JAVA IO

211

FINAL ExAmpLE

Therefore, the content of the significand field is 11101101110011001100110 (the first 1
digit before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent
field is 133 or binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is
handled only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

AN EXAMPLE

To highlight the principle I will look at a small calculation. Suppose a floating point contains
the following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110,
which is the number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically
can be assumed as follows. The exponent field represents values in the range of 0 to 255,
but 255 which has the value 11111111 that is illegal. The power of 2 exponent thus lies
between -127 and 127. The largest positive number is:

01111111011111111111111111111111

that is the same bit pattern as 123.45 except the sign bit.

AN EXAMPLE

To highlight the principle I will look at a small calculation. Suppose a floating point contains
the following bits:

JAVA 5: FILES AND JAVA IO

211

FINAL ExAmpLE

Therefore, the content of the significand field is 11101101110011001100110 (the first 1
digit before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent
field is 133 or binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is
handled only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

AN EXAMPLE

To highlight the principle I will look at a small calculation. Suppose a floating point contains
the following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110,
which is the number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically
can be assumed as follows. The exponent field represents values in the range of 0 to 255,
but 255 which has the value 11111111 that is illegal. The power of 2 exponent thus lies
between -127 and 127. The largest positive number is:

01111111011111111111111111111111

When the first bit is 1, it represents a negative number. The exponent part is 10001110,
which is the number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically
can be assumed as follows. The exponent field represents values in the range of 0 to 255,
but 255 which has the value 11111111 that is illegal. The power of 2 exponent thus lies
between -127 and 127. The largest positive number is:

JAVA 5: FILES AND JAVA IO

211

FINAL ExAmpLE

Therefore, the content of the significand field is 11101101110011001100110 (the first 1
digit before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent
field is 133 or binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is
handled only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

AN EXAMPLE

To highlight the principle I will look at a small calculation. Suppose a floating point contains
the following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110,
which is the number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

143

– 1 bit to the sign
– 8 bits for the eksponent
– 23 bits for the significand

The sign bit is 0 if the number is non-negative and 1 if the number is negative. If you look at the
significand field it contains the 23 bits:

bbbbbbbbbbbbbbbbbbbbbbbb

and it is interpreted as the binary number

1. 𝑏𝑏 ∗ 2𝑛𝑛𝑛𝑛−127

where n is the value of the exponent field. 127 is called the bias value, which is binary 01111111. It is
used to ensure that the content of the exponent field is not negative. I would as an example look at the
number 123.45. Since it is a positive number is the sign bit 0. The number's binary representation is

123.45 = 1.1110110111001100110011001100110011001100110011. . .∗ 26

Therefore, the content of the significand field is 11101101110011001100110 (the first 1 digit
before the decimal point is implicit). Since 133-127 = 6 is the content of the exponent field is 133 or
binary 10000101. Then the number 123.45 is represented as the bit pattern

01000010111101101110011001100110

In the case of floiting point are not used complement arithmetic, and a negative number is handled
only by changing the sign bit. As an example is -123.45 is represented as

11000010111101101110011001100110

that is the same bit pattern as 123.45 except the sign bit.

An example

To highlight the principle I will look at a small calculation. Suppose a floating point contains the
following bits:

11000111001100111100111001010100

When the first bit is 1, it represents a negative number. The exponent part is 10001110, which is the
number 142, and subtract the bias you gets 15.

The significand part is 01100111100111001010100 and the number is then

1.01100111100111001010100 ∗ 215 = 1011001111001110.01010100 = 46030.3213

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically
can be assumed as follows. The exponent field represents values in the range of 0 to 255,
but 255 which has the value 11111111 that is illegal. The power of 2 exponent thus lies
between -127 and 127. The largest positive number is:

01111111011111111111111111111111

JAVA 5: FILES AND JAVA IO

212

FInal example

212

The exponent is 11111110 – 127 = 254-127 = 127, and the greatest positive number is
therefore

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

Similarly, the smallest positive number:

JAVA 5: FILES AND JAVA IO

212

FINAL ExAmpLE

212

The exponent is 11111110 – 127 = 254-127 = 127, and the greatest positive number is
therefore

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 – 127 = -127 and the number is

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

The exponent is 00000000 – 127 = -127 and the number is

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 5: FILES AND JAVA IO

213

FInal example

(it is one of the numbers that vary slightly). The result is that you can assume that the
standard may represents numbers within the following range:

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

and that when 224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value

JAVA 5: FILES AND JAVA IO

213

FINAL ExAmpLE

(it is one of the numbers that vary slightly). The result is that you can assume that the
standard may represents numbers within the following range:

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

and that when 224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value

00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 BITS FLOITING POINTS

The principle is the same as above, but using 64 bits which are interpreted as follows:

 - 1 bit to the sign
 - 11 bits for the eksponent
 - 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 – 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

but there are others.

64 BITS FLOITING POINTS

The principle is the same as above, but using 64 bits which are interpreted as follows:

 - 1 bit to the sign
 - 11 bits for the eksponent
 - 52 bits for the significand

JAVA 5: FILES AND JAVA IO

213

FINAL ExAmpLE

(it is one of the numbers that vary slightly). The result is that you can assume that the
standard may represents numbers within the following range:

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

and that when 224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value

00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 BITS FLOITING POINTS

The principle is the same as above, but using 64 bits which are interpreted as follows:

 - 1 bit to the sign
 - 11 bits for the eksponent
 - 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 – 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

Consider as an example the number 12345.6789. Binary it is

JAVA 5: FILES AND JAVA IO

213

FINAL ExAmpLE

(it is one of the numbers that vary slightly). The result is that you can assume that the
standard may represents numbers within the following range:

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

and that when 224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value

00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 BITS FLOITING POINTS

The principle is the same as above, but using 64 bits which are interpreted as follows:

 - 1 bit to the sign
 - 11 bits for the eksponent
 - 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 – 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

or

JAVA 5: FILES AND JAVA IO

213

FINAL ExAmpLE

(it is one of the numbers that vary slightly). The result is that you can assume that the
standard may represents numbers within the following range:

144

and the value of the number is -46030.32813.

There is little variation in terms of how the boundary conditions are treated, but basically can be
assumed as follows. The exponent field represents values in the range of 0 to 255, but 255 which has
the value 11111111 that is illegal. The power of 2 exponent thus lies between -127 and 127. The
largest positive number is:

01111111011111111111111111111111

The exponent is 11111110 - 127 = 254-127 = 127, and the greatest positive number is therefore

1.11111111111111111111111 ∗ 2127 = 111111111111111111111111 ∗ 2104

= 3.402823466 ∗ 1038

Similarly, the smallest positive number:

00000000000000000000000000000001

The exponent is 00000000 - 127 = -127 and the number is

1.00000000000000000000001 ∗ 2−127 = 100000000000000000000001 ∗ 2−150

= 5.87747245 ∗ 10−39

(it is one of the numbers that vary slightly). The result is that you can assume that the standard may
represents numbers within the following range:

[−1038; −10−38] ∪ [10−38; 1038]

and that when224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value
00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 bits floiting points

The principle is the same as above, but using 64 bits which are interpreted as follows:

– 1 bit to the sign

and that when 224 = 16777216, there are about 7 significant digits.

Individual bit patterns are assigned a special meaning:

Bit pattern Value

00000000000000000000000000000000 0
01111111100000000000000000000000 Infinity
11111111100000000000000000000000 Minus inifinity
01111111110000000000000000000000 Not a number

but there are others.

64 BITS FLOITING POINTS

The principle is the same as above, but using 64 bits which are interpreted as follows:

 - 1 bit to the sign
 - 11 bits for the eksponent
 - 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 – 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

Since 13 = 1036 – 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

JAVA 5: FILES AND JAVA IO

214

FInal example

Slightly rounded it provides the opportunity to represent numbers within the following range:

145

– 11 bits for the eksponent
– 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 - 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

Slightly rounded it provides the opportunity to represent numbers within the following range:

[−10308; −10−308] ∪ [10−308; 10308]

and it means approximately 15 significant digits.

Another example

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

0100000100010111000101101100100111001111110001111010001110011000

Sign:

0, the number is positive

Exponent:

10000010001 - 1023 = 1041 - 1023 = 18

Significand:

0111000101101100100111001111110001111010001110011000

1.0111000101101100100111001111110001111010001110011000 * 218 =
1011100010110110010.0111001111110001111010001110011000 =
378290.45291

and it means approximately 15 significant digits.

ANOTHER EXAMPLE

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

JAVA 5: FILES AND JAVA IO

214

FINAL ExAmpLE

Slightly rounded it provides the opportunity to represent numbers within the following range:

145

– 11 bits for the eksponent
– 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 - 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

Slightly rounded it provides the opportunity to represent numbers within the following range:

[−10308; −10−308] ∪ [10−308; 10308]

and it means approximately 15 significant digits.

Another example

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

0100000100010111000101101100100111001111110001111010001110011000

Sign:

0, the number is positive

Exponent:

10000010001 - 1023 = 1041 - 1023 = 18

Significand:

0111000101101100100111001111110001111010001110011000

1.0111000101101100100111001111110001111010001110011000 * 218 =
1011100010110110010.0111001111110001111010001110011000 =
378290.45291

and it means approximately 15 significant digits.

ANOTHER EXAMPLE

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

0100000100010111000101101100100111001111110001111010001110011000

Sign:

0, the number is positive

Exponent:

10000010001 – 1023 = 1041 – 1023 = 18

Significand:

0111000101101100100111001111110001111010001110011000
1.0111000101101100100111001111110001111010001110011000 * 218 =
1011100010110110010.0111001111110001111010001110011000 =
378290.45291

Sign:

0, the number is positive

Exponent:

JAVA 5: FILES AND JAVA IO

214

FINAL ExAmpLE

Slightly rounded it provides the opportunity to represent numbers within the following range:

145

– 11 bits for the eksponent
– 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 - 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

Slightly rounded it provides the opportunity to represent numbers within the following range:

[−10308; −10−308] ∪ [10−308; 10308]

and it means approximately 15 significant digits.

Another example

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

0100000100010111000101101100100111001111110001111010001110011000

Sign:

0, the number is positive

Exponent:

10000010001 - 1023 = 1041 - 1023 = 18

Significand:

0111000101101100100111001111110001111010001110011000

1.0111000101101100100111001111110001111010001110011000 * 218 =
1011100010110110010.0111001111110001111010001110011000 =
378290.45291

and it means approximately 15 significant digits.

ANOTHER EXAMPLE

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

0100000100010111000101101100100111001111110001111010001110011000

Sign:

0, the number is positive

Exponent:

10000010001 – 1023 = 1041 – 1023 = 18

Significand:

0111000101101100100111001111110001111010001110011000
1.0111000101101100100111001111110001111010001110011000 * 218 =
1011100010110110010.0111001111110001111010001110011000 =
378290.45291

Significand:

JAVA 5: FILES AND JAVA IO

214

FINAL ExAmpLE

Slightly rounded it provides the opportunity to represent numbers within the following range:

145

– 11 bits for the eksponent
– 52 bits for the significand

The bias value is 1023, that binary is 01111111111.

Consider as an example the number 12345.6789. Binary it is

11000000111001.1010110111001100011000111111000101000001.....

or

1.1000000111001101011011100110001100011111100010100001.....*213

Since 13 = 1036 - 1023 and 1036 = 10000001100 is the representation of 12345.6789:

0100000011001000000111001101011011100110001100011111100010100001

Slightly rounded it provides the opportunity to represent numbers within the following range:

[−10308; −10−308] ∪ [10−308; 10308]

and it means approximately 15 significant digits.

Another example

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

0100000100010111000101101100100111001111110001111010001110011000

Sign:

0, the number is positive

Exponent:

10000010001 - 1023 = 1041 - 1023 = 18

Significand:

0111000101101100100111001111110001111010001110011000

1.0111000101101100100111001111110001111010001110011000 * 218 =
1011100010110110010.0111001111110001111010001110011000 =
378290.45291

and it means approximately 15 significant digits.

ANOTHER EXAMPLE

As a final calculation. Assume that a real number is represented as the following 64-bit pattern

0100000100010111000101101100100111001111110001111010001110011000

Sign:

0, the number is positive

Exponent:

10000010001 – 1023 = 1041 – 1023 = 18

Significand:

0111000101101100100111001111110001111010001110011000
1.0111000101101100100111001111110001111010001110011000 * 218 =
1011100010110110010.0111001111110001111010001110011000 =
378290.45291

	Foreword
	1	Introduction
	2	java.io
	2.1	Files
	Exercise 1
	2.2	Random access files
	Problem 1
	2.3	Byte streams
	Exercise 2
	Exercise 3
	Exercise 4
	2.4	Object serialization
	2.5	Character streams
	Problem 2
	2.6	Text scanner
	Exercise 5

	3	java.nio
	3.1	Buffers
	3.2	Channels
	3.3	Path and Files

	4	�Operations on simple data types
	4.1	The integers
	Exercise 6
	Exercise 7
	Problem 3
	Problem 4
	Exercise 8
	Exercise 9
	Exercise 10

	5	Final example
	5.1	The model
	5.2	The user interface
	5.3	The dialog box

	Appendix A
	The binary number system
	The hexadecimal system
	The integers
	Complement arithmetic
	Binary operations
	Encoding of characters
	Representation of decimal numbers

